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ABSTRACT 

Bardaka, Eleni. M.S.C.E., Purdue University, August 2012. Mixed Linear Modeling 

Techniques For Enhancing Pavement Performance Predictions. Major Professor: Samuel 

Labi. 

 

 

The use of appropriate advanced modeling techniques for predicting the performance of 

pavements that have received rehabilitation treatments may reap substantial benefits to a 

Pavement Management System (PMS). If the modeling technique is appropriately chosen 

on the basis of practicality, precision, the intended use of the model, and the nature of the 

pavement data, its applicability to PMS can be enhanced greatly. Pavement rehabilitation 

data typically constitutes of repeated measurements that form an unbalanced three-level 

nested structure, which makes the analysis quite challenging. This thesis proposes an 

enhanced methodological framework for pavement rehabilitation treatment analysis that 

uses mixed linear modeling techniques. Mixed models constitute a statistical technique 

that includes both fixed effects and random effects. The proposed framework is 

demonstrated using data from the Indiana Interstate network. In applying the developed 

framework, agencies can not only statistically quantify the post-rehabilitation 

performance of pavements, but also develop estimates and ranges of treatment service 

lives and thus update or refine the treatment service lives that are currently published in 

their pavement design or preservation manuals. These procedures are demonstrated 

analytically using a case study. The proposed framework can also be used by highway 

agencies as part of their network-level needs assessment because it offers a more reliable 

estimation of future physical and fiscal needs, as shown in the case study presented in this 

thesis.  
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CHAPTER 1 INTRODUCTION 

1.1 Background and Problem Statement 

Highway assets constitute the most valuable public-owned infrastructure in most 

countries and are a vital factor in economic growth and social development. Of the 

various improvement activities applied to highway infrastructure in the United States, 

highway pavement preservation is associated with the highest levels of expenditure. 

Preservation treatments involve the structural or functional enhancement of the pavement 

structure in order to improve the condition and ride quality of the pavement and to extend 

the life of pavement assets. The importance of maintenance and rehabilitation activities 

for maintaining pavement assets in a serviceable condition have been emphasized by 

federal regulation; and the 1991 Intermodal Surface Transportation Efficiency Act 

allocated the highest percentage (35%) of federal highway funds to pavement 

preservation activities (FHWA, 1997). In spite of federal funding assistance, highway 

agencies still face budgetary constraints in preserving their pavement assets, under the 

combined stress of ever-increasing personal and commercial traffic and climate. For these 

reasons, pavement managers try to identify and implement cost-effective preservation 

strategies and practices; and pavement managers need reliable pavement performance 

prediction tools and preservation treatment service life estimates to support their 

decision-making.   

 

In a pavement management system (PMS), tools and methods are deployed to 

determine optimum strategies for providing, evaluating, and maintaining pavement assets 

in a serviceable condition (AASHTO, 2001). Mathematical models that predict the future 

condition of a pavement on the basis of past deterioration trends constitute a major part of
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the set of tools deployed by pavement managers.  Pavement preservation is the sum of 

activities undertaken to provide and maintain serviceable highways, and typically 

includes corrective maintenance, preventive maintenance and rehabilitation projects (Ong 

et al, 2010). Highway agencies are incorporating the analysis of preservation treatments 

performance in pavement management for multiple reasons. Treatment performance 

models, for project-level planning purposes, can be used for the short-term and long-term 

prediction of the condition of specific pavement sections after they receive a specific 

treatment. Numerous ways of measuring the effectiveness of preservation treatments, 

both in the short-term or long-term, have been proposed. However, the most widely-

accepted approach is measuring the time that passes after a treatment application until 

pavement performance reaches a specified threshold, which is referred to as the treatment 

service life (Sinha and Labi, 2012). Using preservation performance models, pavement 

managers can obtain treatment service life estimates and make inferences about treatment 

effectiveness. This information further helps the highway agency to carry out effective 

decision-making for future treatment applications, determine optimal times for 

preservation interventions and deploy preservation strategies that minimize pavement 

life-cycle cost, thus enhancing the pavement management operation (Sinha and Labi, 

2012).  

 

Pavement management can be developed and practiced at two levels: network and 

project (Haas et al, 1994). Network-level management is associated with physical and 

monetary needs assessment, programming, and budgeting for a pavement network; while 

project-level management focuses on applying optimal design or preservation strategies 

for a specific pavement section (FHWA, 1995). Integrating the pavement management 

network and project levels for achieving optimal holistic system operation were identified 

as a key challenge by Haas (1995). Two major prerequisites for this integration to occur 

are: (1) the development of one central database for the PMS, and (2) the integration of 

performance models, which means using one methodology suitable for both network and 

project management levels (Pilson and Hudson, 1998).  Figure 1.1 illustrates the possible 

roles of integrated preservation performance modeling in pavement management.  
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Figure 1.1 Applications of Integrated Preservation Treatment Performance Modeling in 

Pavement Management Processes  

 

 

Through an integrated process, preservation performance models, apart from 

project-level predictions, can help establish the year in which asset preservation likely 

will be necessary, which then can be used to establish short- or long-term physical and 

fiscal work plans; they can also offer reliable treatment life expectancies, which can be 

used to develop improved preservation strategies. Integration of asset valuation 

performance-based or age-based approaches with the project and network levels of 

management can also be accomplished using performance predictions.  

 

Reliable and effective preservation treatment performance modeling techniques 

that allow for network-level and project-level integration may bear substantial benefits to 

a PMS. Increased precision in terms of predictions and treatment service life estimates 

can improve treatment selection decision-making and reduce the uncertainty in the 

estimation of network-level physical needs, and thus, in programming and budgeting. The 

incorporation of performance modeling techniques in PMS was initiated in the 1970s. 
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Since then, a variety of techniques have been investigated for use or implemented in PMS. 

However, in the area of preservation performance, there is a need for an enhanced 

framework for preservation performance prediction that can accommodate the peculiar 

nature of pavement data and allow for integration of the network and project management 

levels, while remaining practical and appropriate for PMS application. 

 

 

1.2 Study Objectives 

The main objective of this study is to develop a methodological framework for 

preservation treatment performance analysis for pavement management. The framework 

duly considers the peculiar nature and structure of pavement preservation data, the need 

for reliable predictions in PMS, and the purposes and integration requirements of 

pavement management. In applying the developed framework, agencies can statistically 

quantify the future performance of pavements that have been preserved and also of 

pavements slated for specific preservation treatments. Another study objective is to 

provide a methodology by which agencies can develop estimates and ranges of treatment 

service lives. Moreover, this thesis seeks to identify specific modeling formulations 

appropriate for modeling preservation treatment performance and thus facilitate the 

adoption of the proposed framework by pavement managers. Another objective is to 

analytically demonstrate the modeling technique and the procedure of predicting 

performance and estimating treatment service life through case studies. Finally, this 

thesis seeks to examine the impact of the proposed methodology on physical and 

monetary needs prediction at the network level. 

 

 

1.3 Scope of the Study 

This thesis focuses on pavement rehabilitation, which involves structural or 

functional pavement enhancement often by adding an overlay to a pavement structure in 

order to improve pavement condition and serviceability, and, more importantly, to extend 

pavement service life. The data used for illustration and configuration of the proposed 
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methodology are from a selection of rehabilitation treatments and one preventive 

maintenance treatment, which had been applied to Indiana Interstates during the period 

1996-2006. The treatments examined are: (1) thin HMA overlay, (2) structural HMA 

overlay, (3) functional HMA overlay, (4) crack and seat PCC and HMA overlay, (5) 

repair PCC and HMA overlay, (6) rubblize PCC/Composite and HMA overlay, and (7) 

PCC overlay on PCCP. As a pavement performance indicator, the International 

Roughness Index (IRI) is used; however, the proposed methodology can accommodate 

any indicator that is or can be considered a continuous variable. Pavement performance 

and traffic data for the period 1995-2009 were used. Finally, the physical and monetary 

needs assessment considers only the future rehabilitation needs of the Indiana Interstates 

that were rehabilitated during the period 1996-2006. 

 

 

1.4 Study Outline and Organization 

In this thesis, a general framework for conducting asset preservation analysis and 

identifying an optimal methodology for incorporation in an asset management component 

system was followed (Figure 1.2). 
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Figure 1.2 General Framework for Developing a Methodology Regarding Asset 

Preservation Treatment Performance 

 

 

This general framework was followed throughout the five chapters of this thesis. 

The first step, which requires the review of past practices and available modeling 

techniques, is accomplished in Chapter 2, where the state of practice and state of the art 

techniques and methods for predicting pavement deterioration and treatment service life 

are reviewed. The contribution of rehabilitation treatment performance models in 

providing input data for PMS (second step) and the characteristics of pavement 

rehabilitation data (third step) are presented in the beginning of Chapter 3. The fourth 

step of the general framework is partly accomplished in Chapters 2 and 3. The modeling 

technique theory and the development of suitable formulations are presented in Chapter 3, 

along with the methodology application in the form of a case study, evaluation of the 

results in terms of general model fit and predictability, and the methodology 

configuration (step 5). The proposed methodological framework for rehabilitation 

treatment performance prediction is presented at the end of Chapter 3. The sixth step of 
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the general framework shown in Figure 1.2 requires, in the context of this study, 

evaluation of the impacts of the proposed methodology on the other pavement 

management processes, under the assumption that the proposed methodology is used to 

accomplish integration. Chapter 4 presents the impacts of the proposed methodological 

framework on future rehabilitation needs estimation under two approaches: (a) age-based 

needs assessment, and (b) performance-based needs assessment. Chapter 5 summarizes 

and concludes this thesis and provides recommendations for future research. 
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CHAPTER 2 A SYNOPSIS OF METHODOLOGIES FOR PAVEMENT 

DETERIORATION PREDICTION 

2.1 Literature Review of Empirical Modeling Practices 

Attempts to develop mathematical equations to describe and predict pavement 

damage initiated in the late 1950s with the beginning of the AASHO Road Test (HRB, 

1962). Then, in the 1970s, researchers began incorporating pavement deterioration 

models in Pavement Management Systems (PMS) because deterioration models 

constituted an essential part of the early pavement management processes. A variety of 

modeling techniques have been investigated or implemented in PMS. This section 

presents a literature review of the state of the practice and state of the art techniques and 

methods for predicting pavement deterioration and/or for estimating treatment service life 

in order to identify their possible limitations and areas for improvement. The review also 

includes existing empirical techniques that are not yet employed in agency PMSs in order 

to identify possible benefits that could be realized by highway agencies in applying these 

techniques. 

 

 

2.1.1 Deterministic Models 

 

2.1.1.1 Univariate Curve Fitting 

Fitting a curve to pavement performance or condition data involves the 

establishment of a linear or non-linear function to describe the relationship between 

pavement performance and a dynamic (cumulative, time related) variable, which could 

typically be related to age or accumulated traffic among other attributes. The relationship 
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may be purely empirical, purely based on a theoretical model, or a combination of the 

two. The difference between simple curve fitting and regression methods is that in the 

former, there is little or no investigation of what affects the deterioration process and the 

manner of such influence (i.e., the form of the deterioration curve); and a function is pre-

assumed and the parameters are estimated typically with least squares. Most highway 

agencies have deployed curve fitting because of its simplicity and because it is practical 

for them to use. The Illinois DOT, for its PMS software, uses linear functions to predict 

pavement condition based on current condition as follows (Bham et al, 2003): 

 

Future Condition = Current Condition +  (Years) (2.1) 

 

where   is the deterioration rate, Years is the pavement age or the age of the last 

preservation treatment applied. The deterioration rate is defined for each pavement family; 

and curve fitting can be used to estimate the rate. The Washington State DOT 

incorporated curve fitting, which uses the Levenberg-Marquardt nonlinear least squares 

estimation, for performance prediction in its PMS software using the following form 

(Pierce et al, 2004): 

 

Pavement Structural Condition             (2.2) 

 

The Louisiana Department of Transportation and Development uses similar 

equations for obtaining predictions for a variety of performance indicators (Khattak et al, 

2008). For different performance indicators, different functional forms are assumed to 

predict pavement condition as a function of age. The Utah DOT uses the dTIMS software 

for pavement condition modeling that assumes the following curve (UDOT, 2009): 

 

Present Condition Index              (2.3) 
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The last of the agencies considered in this review, the Minnesota DOT, uses 

historical data on a pavement smoothness index, called the Ride Quality Index, to fit a 

curve for each pavement section and to define the remaining service life (MnDOT, 2011).  

 

 

2.1.1.2 Multivariate Regression Analysis 

Regression analysis produces pavement performance equations based on the 

assumption that pavement deterioration is caused by multiple factors, such as age, traffic, 

climate, and maintenance and rehabilitation history. Regression is also used in pavement 

preservation analysis for the estimation of treatment service life (Labi et al, 2005; 

Khurshid et al, 2009a; Khurshid et al, 2009b; Irfan et al, 2009a; Irfan et al, 2009b; 

Ahmed et al, 2010).  

 

Highway agencies have not widely embraced multivariate techniques due to the 

lack of data. Another reason is the nonexistence of an easily-manageable database system; 

and although many agencies have been collecting data for over 20 years, their data often 

cannot be easily organized into a useful format, which inhibits statistical analysis (Lea 

and Harvey, 2004). Rajagopal and George (1991) developed non-linear performance 

prediction models for the Mississippi State Highway Department using the Pavement 

Condition Rating (PCR) as an indicator of pavement condition. They explained the 

deterioration process using pavement age, traffic, thickness of the last treatment applied, 

life-cycle before overlay, and a composite structural number. Sebaaly et al (1995) 

developed performance models for the most commonly-used pavement maintenance 

techniques of the Nevada DOT. They used regression analysis to predict the Present 

Serviceability Index (PSI) in terms of pavement age, equivalent single axle loads 

(ESALs), structural number, maximum and minimum yearly temperature, freeze-thaw 

cycles, and total number of wet days. Some highway agencies may encounter difficulty in 

applying models such as the Mississippi and Nevada models because fairly elaborate data 

on multiple attributes is required by them. 

 



www.manaraa.com

11 

 

 

1
1
 

Ong et al (2010) developed regression models for a selection of preservation 

treatments for the Indiana DOT. The models were developed for three pavement 

performance indicators (IRI, PCR, and Rutting) and used the cumulative average daily 

truck traffic and the cumulative annual freeze index to predict pavement deterioration.  

  

The new Mechanistic-Empirical Design Guide (M-E PDG) includes performance 

models that were estimated using regression analyses. The expectation is that these 

models will be used – directly or after calibration – by highway agencies (AASHTO, 

2008). The proposed methodology is rather complicated.  Several equations, which 

include multiple variables, are developed for different distresses; and some of the distress 

estimates are then used as input into models for roughness prediction. Aguiar-Moya et al 

(2011) recognized that this process may introduce bias in the analysis because of possible 

correlation between the estimated distresses and unobserved components in the roughness 

performance models. The researchers corrected for this bias by using instrumental 

variable regression to estimate the performance models. Moreover, it was identified that 

the pavement data used for the M-E PDG models are panel data, and a random effects 

model was used to correct for possible unobserved heterogeneity. Nevertheless, the 

correction of bias still does not make the M-E PDG performance models practical for 

highway agencies. These models were developed using data from the Long-Term 

Pavement Performance (LTPP) database and include variables not readily available in 

most highway agencies databases, such as the soil plasticity index, percent of subgrade 

material passing No. 200 sieve, and PCC air content (AASHTO, 2008). For this reason, 

the deterioration models of the ME-PDG are not expected to be widely adopted by 

highway agencies for purposes of pavement management.  

 

 

2.1.1.3 Bayesian Regression 

Bayesian regression is a specialized adaptation of the Bayes’ Theorem involving 

the development of multivariate regression models that explicitly consider two sources of 

information: (i) information that is known prior to an experiment and (ii) information that 
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is derived from an experiment (Washington et al, 2011). This approach has been adapted 

by a number of researchers in pavement management as it allows the development of 

performance models even where there is insufficient data.  

 

A Bayesian methodology for pavement deterioration modeling designed for 

highway agencies and accompanied by relevant software was first developed by the 

Canadian Strategic Highway Research Program (C-SHRP) (Hajek and Bradbury, 1996). 

The C-SHRP Bayesian methodology includes the development of a linear regression 

model based on the available observed data, separate models of the same form based on 

expert judgment, and a method for combining these two sources of information. The 

methodology and the use of the relevant software were proposed to the Ontario Ministry 

of Transportation (Hajek and Bradbury, 1996). Kajner et al (1996) tested the 

methodology for eight Canadian highway agencies and demonstrated that they were 

practical for use.   

 

George (2000) conducted a study for the Mississippi DOT exploring Bayesian 

regression for modeling pavement performance. Ten experts established the “prior” data 

and their judgments (expressed in numerical scores) were encoded using a full-

orthogonal matrix elicitation technique. The study concluded that there was large 

disparity between the field data and the expert opinion; and as a consequence, the 

regression models also developed in the study were more preferred to the Bayesian 

regression models.  

 

Recently, Amador and Mrawira (2011) reanalyzed a rut-depth progression model 

developed in previous research from the AASHO Road Test data using Bayesian 

regression and concluded that this method produces more reliable performance 

predictions. 
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2.1.1.4 Autoregressive Models 

Autoregressive modeling is a method of describing the behavior of a variable on 

the basis of its past values, typically used in time-series analysis (Washington et al, 2011). 

Abu-Lebdeh et al (2003) used this technique for predicting pavement distress 

development for different preservation treatments and proposed the developed 

autoregressive models as an alternative prediction tool for the Michigan DOT.  Although 

the researchers concluded that the predictions displayed high accuracy, they conceded 

that use of the models requires extensive data that may not be available to highway 

agencies. Prozzi and Madanat (2003) estimated a non-linear autoregressive model using 

data from the AASHO Road Test and concluded that this technique would be appropriate 

for pavement management because condition data are typically available on a regular 

basis and predictions are commonly required for the next one or two time periods. 

However, in reality, pavement management systems are planning tools and the 

predictions therefore are actually needed for more than one or two time periods. Thus, the 

use of these models is impractical. 

 

 

2.1.1.5 Seemingly Unrelated Equations (SURE) 

In empirical studies, pavement deterioration is typically represented by one 

performance indicator and modeled as such. However, different performance indicators 

potentially may be correlated with each other even though they are related to different 

deterioration mechanisms (Prozzi and Hong, 2008). Effective decision-making in 

pavement management ideally takes into account various performance indicators. For this 

reason, researchers have proposed addressing performance models based on different 

performance indicators as a system of equations, which can capture the correlation of the 

different indicators and thus provide a more efficient estimation. Prozzi and Hong (2008) 

first proposed the use of seemingly unrelated equations as an appropriate approach for 

asset performance modeling. Anastasopoulos et al (2012) followed a similar approach, 

and using random parameters in order to control for unobserved heterogeneity, provided 

more precise parameter estimates.  
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2.1.2 Probabilistic Models 

 

2.1.2.1 Markov Chains 

A Markov chain describes a time-independent stochastic process that undergoes 

transitions from a state at one stage to a state at the next stage. A model based on this 

chain describes the probability of transition from one condition state to another. These 

transition probabilities, based solely on the present state rather than past states, are 

represented in a matrix form that is called the transition probability matrix (Washington 

et al, 2011). If the condition of an asset can be classified into discrete states, the 

deterioration process can be modeled as a Markov chain. 

 

The major challenge for developing Markov models is the establishment of the 

transition probability matrices. For this reason, the past literature contains a number of 

ways for calculating these probabilities, such as expert opinion, frequency of observed 

transition, sampling from statistical distributions, optimization, and Bayesian techniques. 

Jiang et al. (1988) developed a methodology for estimating the transition probability 

matrix for bridge performance modeling, whereby an initial guess is made for the 

transition probabilities and the expected condition rating at each age is estimated. Then, a 

non-linear regression model is developed to represent the “actual” performance curve. 

Finally, the transition probability matrix is obtained through optimization with the 

objective function of minimizing the absolute distance between the “actual” condition 

rating at a certain age and the predicted condition for the corresponding age generated by 

the Markov Chain. Madanat et al (1995) used an ordered probit model to construct an 

incremental discrete deterioration model in which the difference in the observed 

condition rating is an indicator of the underlying latent deterioration. This model was 

then used to compute a time-dependent transition probability matrix. Li et al. (1996) used 

a non-homogeneous Markov probabilistic approach for pavement deterioration modeling.  

According to the authors’ approach, each element of the transition probability matrices is 

determined on the basis of reliability analysis and Monte Carlo simulation techniques.  
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Markov chain-based prediction models can be integrated with network 

programming and prioritization programs to produce optimal preservation treatments, 

given the performance standards and budgetary constraints (Butt et al, 1994). For this 

reason, the Markov process for network-level performance prediction in PMS has been 

adopted by several highway agencies. The Arizona DOT was one of the first agencies to 

use the Markov process for network level performance prediction combined with linear 

programming in order to achieve optimal highway preservation (Golabi et al, 1982). 

Since then, that agency has continuously enhanced the procedures used in the 

probabilistic performance prediction (Wang et al, 1992; Wang et al, 1994). However, the 

need for obtaining performance predictions at the project level and network level through 

an integrated procedure was recently realized, and a site-specific modeling approach was 

incorporated in the PMS (Li et al, 2006). Although no details were provided about the 

site-specific approach and its estimation procedure, the inability of the Markov process to 

produce accurate predictions at the project level was emphasized.   

 

Regarding other highway agencies, Silva et al (2000) proposed the use of the 

Markov model or the logistic growth model for local PMS in Michigan counties; Chou et 

al (2008) developed Markov models for Ohio DOT; and Wang et al (2010) developed a 

Markov process-based management system for the Georgia DOT to forecast their 

network-level annual budget needs.  

 

 

2.1.2.2 Survival Analysis 

Survival analysis, which involves the modeling of time to “failure,” has been used 

by a significant number of researchers for estimating the time it takes for a pavement to 

deteriorate to a certain performance threshold. In general, the probability that a pavement 

will not have failed by a certain age t is represented by a survival function (Washington et 

al, 2011): 

  

            (2.4) 
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where   is a random variable denoting the time of “failure.” 

 

Survival curves can be developed using non-parametric, semi-parametric, or 

parametric hazard-based duration models. In the non-parametric models, there is no 

information pertaining to the distribution of the time to failure,  , and how the exogenous 

variables affect the time to failure. In the semi-parametric models, there is also no 

assumption about the underlying failure distribution, but the effects of potential 

influential factors on the time to failure can be estimated. Finally, in the parametric 

models, a distribution of the time of failure is assumed, and the effects of exogenous 

variables are estimated (Washington et al, 2011).  

 

Unlike deterministic models, duration models enable the stochastic nature of 

pavement failure to be evaluated, as well as censored data to be incorporated, in the 

statistical estimation of the model parameters (Prozzi and Madanat, 2000).  The term 

“censored data” refers to the unobserved “failure” events in a dataset, which is a common 

problem in modeling service life. Some pavement sections will reach terminal conditions 

during the observed period, while others will fail at some point in the future (Paterson, 

1987).  

 

Paterson and Chesher (1986) were the first to apply survival analysis in pavement 

surface distress data for developing pavement deterioration models for the World Bank. 

Prozzi and Madanat (2000) reanalyzed the American Association of State Highway 

Officials (AASHTO) Road Test data using parametric duration models. Romanoschi and 

Metcalf (2000) used rutting data collected as part of the first full-scale accelerated 

pavement test in Louisiana to identify appropriate statistical models for determination of 

the probability distribution function for the time to “failure” of pavement structures. 

DeLisle et al (2003) focused on the effect of the exclusion of censored data on the 

estimated service life.  The results from their study indicated that if censored data are 

simply excluded from the analysis, the resulting deterioration rates tended to be greater 
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than the actual rates. Wang et al (2005), using data from the LTTP program, conducted a 

parametric survival analysis based on the accelerated failure time model to investigate the 

relationship between fatigue cracking and its potential influencing factors in flexible 

pavements. Yang (2007) developed parametric duration models using PCR data collected 

as part of the Florida PMS. Yu et al (2008) also developed survival curves based on 

historical PCR data using a semi-parametric method called the Cox proportional hazards 

(PH) method. Recently, Morian et al (2011) used the Kaplan-Meier method to develop 

survival curves for estimating the service life of the maintenance treatments applied as 

part of the Specific Pavement Study - 3 (SPS-3) of the LTPP program. 

 

Notwithstanding the extensive research in the area of probabilistic pavement 

service life estimation, the fact remains that there has been only one application in 

practice. Gharaibeh and Darter (2003) used data from the fourth round of pavement 

longevity studies conducted by the Illinois DOT, to investigate pavement service life 

using survival curves. Survival curves were generated using the Kaplan-Meier method; 

and mathematical models then were best fitted to the survival curves to predict the 

probability of failure as a function of age or the cumulative number of ESALs. It should 

be noted that, for the Gharaibeh and Darter study, service life was defined as the time 

interval between two successive overlay placements; therefore, this estimate may not 

reflect the real service life and would likely be influenced by agency budget constraints 

or the subjective judgment of the decision-makers. 

 

 

2.1.3 Other Model Types 

 

2.1.3.1 Mixed Models 

Pavement performance and condition data are typically a cross-section of time-

series measurements from different pavement sections, which is also known as panel data. 

General statistical models for cross-sectional data (e.g., regression, probit, logit, etc.) 

ignore the panel structure and treat the effect of unobserved variables as a pure chance 
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event (Hsiao, 1993). Mixed models are an extension of the general linear model to allow 

for random effects and correlation among responses. Random effects are random 

variables that represent unobserved characteristics shared within the observations of a 

specific group (pavement section, in the context of this thesis) (Washington et al, 2011). 

The models are termed “mixed” to reflect the presence of both fixed effects (fixed 

parameters) and random effects (Littell et al, 2006).  

 

Madanat et al (1997) first used random effects to account for unobserved 

heterogeneity in a probit model for bridge deck deterioration. Random effects were used 

to control for unobserved effects within observations from the same bridge. Then, 

Madanat and Shin (1998), within the same concept, used random effects in modeling 

linear pavement distress progression. Archilla (2006) identified that pavement data 

constitute a specific case of panel data referred to as “repeated measurements.” Condition 

measurements taken in time at the same pavement section are typically correlated. Thus, 

Archilla (2006) controlled for a pavement section’s unobserved effects and serial 

correlation in the estimation of a rutting progression model. Yu et al (2007) focused on 

the ability of mixed models to predict accurately the condition of specific pavement 

sections. Chu and Durango-Cohen (2008) empirically compared various pavement 

performance models and concluded that models that account for unobserved 

heterogeneity show improved predictive capabilities. Also, Hong and Prozzi (2010) used 

random coefficients to estimate a roughness progression model. They identified that 

mixed models can be used for both the network and project levels of pavement 

management because they are capable of providing “population-based” and 

“subpopulation-based” estimates. 

 

 

2.1.3.2 Artificial Neural Network Analysis 

Artificial neural networks (ANN) can be described as adaptive systems used to 

abstract the underlying relationships between dependent and independent variables and 

express them as weight matrices (Washington et al, 2011). ANN analysis has become 
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extremely popular because it is convenient and often results in reliable mathematical 

models that emulate numerical model components (Washington et al, 2011). This is 

important because the pavement deterioration process is complex, and trying to find an 

appropriate functional form is often a difficult task. For these reasons, many researchers 

have used ANN for analyzing pavement performance data (Attoh-Okine, 1994; Ferregut 

et al, 1999; Shekharan, 2000; Lou et al, 2001; Yang et al, 2003; Miradi and Molenaar, 

2007; Kargah-Ostadi et al, 2010).  

 

Regarding the application of this type of analysis in highway agencies, Ferregut et 

al (1999) developed an ANN methodology for the Texas DOT using Falling Weight 

Deflectometer (FWD) data to estimate the remaining life of flexible pavements. Also, the 

Florida DOT investigated the use of ANN for forecasting short-term pavement condition 

and concluded that this technique gave more reliable predictions compared to traditional 

regression techniques (Lou et al, 2001; Yang et al, 2003). More recently, Pekcan et al 

(2008) developed an ANN software package to assess pavement rehabilitation strategies 

through FWD back-calculation for the Illinois DOT.   

 

 

2.2 Criteria for Modeling Technique Selection 

In selecting an appropriate modeling technique for rehabilitation treatment 

performance analysis to be incorporated into a PMS framework, a number of factors 

should be considered, and a discussion of them follows. 

 

 

2.2.1 Data Characteristics and Requirements 

The nature of the data is one of the most important criteria for selecting a 

modeling technique. Data characteristics in pavement analysis include the spatio-

temporal structure of the data (time-series, cross-sectional, or panel) and the nature of the 

of pavement performance indicator (continuous or discrete variable). Data availability (in 
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terms of the amount of data and the variety of relevant explanatory variables) is also of 

paramount importance. 

 

 

2.2.2 Performance Prediction and Service Life Estimation 

Effective pavement management requires both the prediction of pavement 

performance following rehabilitation treatment application and using the developed 

performance model and/or other considerations, in order to make a determination of the 

treatment effectiveness of the sustained increase in performance or the treatment service 

life. From a deterministic standpoint, this is often accomplished by developing treatment 

performance models, followed by estimation of service life. From a probabilistic 

standpoint, this is often accomplished by using survival functions directly.  

 

 

2.2.3 Deterministic/Probabilistic Techniques 

It has been argued that pavement deterioration and failure are stochastic 

phenomena that cannot be adequately explained using deterministic models (Jiang et al, 

1988; Paterson, 1987). However, it should be recognized that when a purely probabilistic 

approach is chosen for a task at a low level of management, asset performance prediction  

can only be done if it is fully ensured that the subsequent management levels, such as 

needs assessment, project prioritization, and project programming, can be carried out 

effectively using probabilistic inputs. At the current time, it is not certain that this is the 

case in most agencies’ PMSs.  

 

 

2.2.4 Prediction Reliability 

Pavement managers need reliable techniques to ascertain the effectiveness of their 

actions. The evaluation of the prediction reliability of modeling techniques can be 

performed on the basis of the theoretical background of each technique, inferences made 
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by previous research studies, and lessons learned from practice. Thus, modeling 

techniques that have the greatest potential for providing reliable outcomes are preferred 

for use.  

     

 

2.2.5 Network-Level and Project-Level Pavement Management 

Pavement management is typically practiced at two levels: the network level and 

the project level (Haas et al, 1994). Some performance modeling techniques, such as 

Markov chain-based models (Butt et al, 1994), are more appropriately suited for an entire 

pavement network or a pavement family, but not a single pavement section. Similarly, 

certain techniques, such as autoregressive models (Prozzi and Madanat, 2003) are more 

appropriately suited for a single pavement section. Modeling techniques that are suited 

for both project level and network level predictions are preferred for use because they can 

allow for integration between the two management levels.  

 

 

2.3 Selection of Modeling Technique 

Using the criteria presented in Section 2.2, the empirical modeling techniques 

presented in Section 2.1 were evaluated on the basis of inferences made from past 

studies/applications and general theoretical background on these techniques. Table 2.1 

presents the criteria of interest met by each empirical technique discussed in Section 2.1.   
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Table 2.1 Summary Results of Empirical Modeling Techniques from Past 

Studies/Applications and Theoretical Background (continues on the next page) 
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Univariate 

Curve 

Fitting 

          

Cross-sectional 

or time-series 

data, continuous 

performance 

indicator 

Requires one 

explanatory 

variable 

Predictions 

reliability can be 

questioned 

Multi-

variate 

Regression 

Analysis 

           

Cross-sectional 

or time-series 

data, continuous 

performance 

indicator 

Easy to estimate, 

to interpret the 

results, and to 

use (if the 

explanatory 

variables are 

reasonably 

chosen) 

Requires 

multiple 

explanatory 

variables; in 

theory, it 

requires that all 

variables 

causing 

deterioration be 

included to give 

accurate 

predictions 

Bayesian 

Regression 
          

Cross-sectional 

or time-series 

data, continuous 

performance 

indicator  

Constitutes a 

solution for 

agencies that 

face lack of field 

data 

Requires a 

source of “prior” 

information/ 

knowledge 

along with 

actual 

performance 

data to improve, 

in theory, on 

regression 

estimates 

Auto-

Regressive 

Models 

        

Time-series 

data, continuous 

performance 

indicator 

Typically fit the 

in-sample data 

very well. 

Suitable for 

short-term 

performance 

prediction 

Requires 

information on 

previous year’s 

performance to 

predict next 

year’s 

performance 

Seemingly 

Unrelated 

Equations 

          

Cross-sectional 

or time-series 

data, continuous 

performance 

indicators  

Captures the 

correlation of 

the different 

performance 

indicators and 

thus provides a 

more efficient 

estimation than 

single-equation 

approaches  

Requires 

multiple 

explanatory 

variables and at 

least two 

indicators of 

pavement 

performance. 



www.manaraa.com

23 

 

 

2
3
 

Table 2.1 Summary Results of Empirical Modeling Techniques from Past 

Studies/Applications and Theoretical Background (starts in the previous page) 
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Markov 

Chains 
          

Cross-sectional 

or time-series 

data, ordered 

discrete 

performance 

indicator. 

Reliable 

representation of 

the network 

condition and 

can be 

integrated with 

network 

programming 

and budgeting 

Best-suited for 

network-level 

PMS 

Survival 

Analysis 
         

Survival data  Flexible in terms 

of data 

requirements 

(parametric, 

non-parametric, 

and semi-

parametric 

approaches 

available) ability 

to be combined 

with risk 

analysis 

Agencies cannot 

easily interpret 

and use the 

results, project-

level predictions 

can be acquired 

only by 

parametric 

survival models   

Mixed 

Models 
           

Panel data Accounts for 

unobserved 

variables; offers 

reliable 

“population-

wide” and in-

sample 

predictions; 

flexible to 

accommodate 

complicated data 

structures 

In-sample 

predictions 

require the 

estimation of the 

model in parallel   

Neural 

Networks 
           

Cross-sectional 

or time-series 

data, continuous 

performance 

indicators 

Considered as a 

universal 

function 

approximator; 

can more easily 

model nonlinear 

data and 

complex 

interactions 

The estimation 

procedure 

resembles a 

“black box” and 

the outcome 

equations may 

be very long and 

complicated 
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Highway agencies have utilized univariate curve fitting obviously due to the 

desire for simplicity, the absence of relevant pavement data, or the lack of a manageable 

and updated database system. Despite its simplicity, this approach is prone to serious 

limitations. Deterioration is assumed to depend only on one factor, which typically is age. 

However, this approach is too restrictive because pavements of the same age can exhibit 

different deterioration rates because of other influential factors, such as traffic and 

climate. Even though the data used for curve fitting are typically categorized in pavement 

families, which reduces the variation among observations, this method sacrifices 

effectiveness for simplicity and cannot be considered reliable for PMS. 

 

Regression analysis has been widely used by researchers for modeling pavement 

deterioration up to the 1990s. However, during the last 15 years, a widespread notion was 

born that regression analysis, typically, is not appropriate for pavement performance and 

condition data (Madanat and Shin, 1998).  Even earlier, it was realized that pavement 

deterioration and failure are stochastic phenomena that cannot be captured by a 

deterministic model (Jiang et al, 1988; Paterson, 1987). Markov chain-based models have 

been adopted by several highway agencies; however, this method can be used as a 

complementary method in PMS for network-level predictions rather than an exclusive 

performance prediction method for an entire system. Survival models have not been 

widely implemented in highway agencies.  The only attempt to develop survival curves 

was performed by the Illinois DOT, from which the basic contribution from the 

developed performance curves was the concept of average service lives (50% probability) 

for the different treatments and pavement families.  Survival analysis in pavement 

management also can be used for network-level physical and monetary needs assessment. 

Ford (2011) proposed a general framework for highway agencies regarding asset life 

estimation using risk-based and probabilistic approaches and demonstrated the benefits of 

using survival analysis for asset life estimation in long-term capital needs assessment. 

 

Other performance modeling techniques have been used to only a small extent, if 

any. Autoregressive models could be useful to an agency only for very short-term 
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predictions due to the fact that the performance data of the previous time period are 

needed for the prediction of the next time period’s performance. Also, Bayesian 

Regression could be used when there is a lack of field data; however, the incorporation of 

expert opinion into the analysis may lead to a large disparity of results (George, 2000) 

and is probably the reason why this technique has not been used widely. Neural network 

analysis is a technique that is convenient and generic, the goal of which is to predict 

efficiently and not to offer insight regarding a phenomenon (Karlaftis and Vlahogianni, 

2011). The estimation procedure resembles a “black box,” which is probably the reason 

why the technique has not seen wide application.  

 

To sum up, univariate curve fitting and Markov chains have been identified as the 

state of practice in modeling techniques used by highway agencies. Numerous other 

techniques have been proposed by researchers for PMS application. Based on the review 

of past studies, it is concluded that mixed models constitute a promising technique for 

PMS application because they are suitable for panel data (typically the structure of 

pavement information) and can offer reliable deterministic predictions (Yu et al, 2007).  

 

 

2.4 Review of Significant Pavement Deterioration Factors 

General factors affecting pavement deterioration and service life can be 

categorized as pavement characteristics (e.g., age, construction/design type, predominant 

material, soil properties, and maintenance/rehabilitation intensities and frequencies), 

traffic loading characteristics (e.g., average daily traffic, truck percentage, and ESALs), 

and environmental characteristics (e.g., climate and weather). A review of such factors is 

discussed in the following subsections. 

 

 

2.4.1 Pavement-Related Factors 

Pavement-related factors have included surface type (rigid, flexible, and 

composite) and thickness, construction quality, structure and overlay age, bituminous 
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asphalt type (virgin/recycled), milling depth, subgrade moisture conditions, and 

frequency and intensity of pavement maintenance and rehabilitation (Attoh-Okine and 

Roddis, 1994; Vepa et al, 1996; Baker et al, 1998; Gharaibeh and Darter, 2003; Morian et 

al, 2005). The quality and characteristics of aggregates, the level of bonding, the layer 

properties, and the degree of compaction have also been found to significantly affect 

bituminous asphalt deterioration (Witczak and Bell, 1978; Noureldin, 1997; Ziari and 

Khabiri, 2007). The quality and thickness of the pavement base material have also been 

identified as influential (Raad et al, 1993; Romanoschi et al, 1999).  

 

 

2.4.2 Traffic-Related Factors 

Traffic loading, particularly truck traffic, causes fatigue and leads to surface 

distresses and/or structural damage to the pavement. Cumulative ESALs, overweight 

truck loading, annual average daily traffic (AADT), and annual average truck traffic have 

been identified as the primary influential factors of pavement deterioration (Gharaibeh 

and Darter, 2003; Kumara et al, 2004; Oh et al, 2007; Irfan et al, 2009a; Khurshid et al, 

2009a). 

 

 

2.4.3 Environment-Related Factors 

Environmental and climatic factors, such as temperature, temperature gradient in 

the asphalt, number of freeze-thaw cycles, freeze-index, precipitation, timing and 

duration of wet base, and subgrade conditions have been found to significantly affect 

pavement deterioration (Puccinelli and Jackson, 2007; Dore and Imbs, 2007; Zuo et al, 

2007; Irfan et al, 2009a; Khurshid et al, 2009a). Temperature levels and variations affect 

the viscosity of asphalt binders, which in turn may affect the stiffness of asphalt 

pavements; and for a typical annual temperature variation, the stiffness of asphalt 

changes by more than one order of magnitude as temperature increases (HRB, 1962).  
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2.5 Chapter Summary 

  This chapter focused on identifying a modeling technique that could serve as a 

basis for a methodological framework for rehabilitation treatment analysis within a PMS. 

First, a literature review of the state of the practice and state of the art techniques and 

methods for predicting pavement deterioration and/or for estimating treatment service life 

was presented. The chapter identified that mixed models constitute a promising technique 

for pavement management. The theoretical background of mixed linear models and their 

applicability in PMS are discussed in Chapter 3.    
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CHAPTER 3 PERFORMANCE PREDICTION METHODOLOGICAL FRAMEWORK 

FOR PAVEMENT MANAGEMENT SYSTEMS 

As discussed in Chapter 1, a pavement management system (PMS) is a set of 

tools or methods that assist decision-makers in finding optimum strategies for providing, 

evaluating, and maintaining pavements in a serviceable condition over a period of time 

(AASHTO, 2001). Closely tied to the development of optimal strategies is the 

development of mathematical models that predict the future condition of a pavement on 

the basis of past deterioration trends. As such, pavement deterioration models constitute a 

major part of the set of tools deployed by pavement managers. These models are typically 

used to predict the condition not only of specific pavement sections, but also of the entire 

pavement network, and contribute to the development of long-term scheduling of 

rehabilitation and reconstruction as well as the determination of future funding needs for 

these activities. Haas et al (1994) identified the following essential characteristics of a 

PMS:  the capability of being constantly updated, providing information about the current 

and future pavement condition at the network and project levels, and using feedback 

information for enhancing future decision-making. Therefore, the deterioration models 

deployed in pavement management should be able to fulfill these previously-mentioned 

essential features of a PMS, particularly regarding the timing of future pavement 

activities.   

 

Pavement rehabilitation, one of the three major categories of pavement activities, 

is the focus of this thesis. In this chapter, advanced methods that account for the peculiar 

nature of pavement rehabilitation data to describe and predict the performance of 

rehabilitation treatments are described, illustrated in case studies and validated. The
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chapter proposes a methodological framework specifically developed for pavement 

management requirements and purposes. 

 

 

3.1. The Contribution of Rehabilitation Treatment Performance Models in Providing 

Input Data for PMS 

The use of appropriate advanced modeling techniques for predicting the 

performance of rehabilitation treatments may bear substantial benefits to a PMS. 

Increased precision in terms of predictions can reduce the uncertainty in network-level 

planning, programming, and budgeting. Moreover, by using more reliable models, the 

highway agency is placed in a better position to be more accountable to taxpayers and 

also to be more confident in funding requests from the legislature. The use of 

inappropriate approaches in rehabilitation treatment analysis could lead to inaccurate 

predictions, which in turn would lead to failure to estimate the actual network future 

needs, and ultimately in misallocation of scarce resources. Last but not least, inaccurate 

perception of the effectiveness of rehabilitation treatments would negatively impact 

future treatment selection decision-making at the project level.   

 

Therefore, the following outcomes of rehabilitation treatment performance 

analysis are essential inputs for pavement management: 

 

 Performance models unique to each rehabilitation treatment. The use of such 

models would assist pavement managers at the planning stage of project 

development in comparing alternative rehabilitation treatments and in 

identifying the optimal rehabilitation treatment through life-cycle cost 

analysis. Short-term and long-term performance predictions of in-service 

pavements that have received some rehabilitation are also essential for the 

management of the pavement network.  
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 Long-term treatment effectiveness models or estimates, such as the average 

rehabilitation treatment service life. This information can be used by 

pavement managers for project-level and network-level decision-making for 

pavement preservation. Moreover, treatment service life is a measure of 

treatment effectiveness, thus service life estimates can be used to evaluate the 

treatments based on their effectiveness or cost-effectiveness; results from 

treatment evaluation can enhance PMS preservation strategies, pavement 

design guides, and rehabilitation manuals. 

 

 In choosing a rehabilitation treatment analysis framework for PMS, the focus 

should be on the actual system needs; however, this does not constitute a new concept. 

Hajek et al (1985) suggested that pavement performance prediction within a PMS 

framework should serve the objectives and purposes of the PMS. As evidenced from the 

literature review presented in Chapter 2, the performance prediction methods deployed by 

agency PMSs still need significant improvement in order to produce very reliable 

performance estimates that are required to accomplish effective pavement management.  

This problem is caused partly by the challenges introduced to rehabilitation treatment 

analysis by the nature of pavement data, which is the focus of the next section. 

  

 

3.2 The Characteristics of Pavement Rehabilitation Data 

To conduct a rehabilitation treatment analysis, information on the post-

rehabilitation pavement performance is needed. Pavement rehabilitation data extracted 

from a pavement management database usually refer to different rehabilitation treatments 

that were applied in several pavement sections at different points in time. A typical 

structure of this kind of data is shown in Figure 3.1. 
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Figure 3.1 A Typical Structure of Pavement Rehabilitation Data 

 

Pavement data for a specific treatment are typically derived from past contracts; 

in Figure 3.1, it is shown that data referring to Treatment 1 are from   past contracts. A 

single rehabilitation contract typically involves the rehabilitation of several miles of 

pavement. To avoid information over-aggregation and the concomitant consequences, 

this thesis assumes that each contract consistd of multiple pavement sections. The length 

of each pavement section can be established by the researcher or pavement manager on 

the basis of data availability and practicality. Contracts of relatively small length (1-2 

miles) could each be considered as one pavement section (in practice, however, this is 

often not the case). To this end, each longer contract section can be decomposed into 1-
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mile pavement sections up to 1/10
th

-mile pavement sections, depending on the pattern 

pavement condition is monitored. It should be noted that using the smallest possible unit 

to define pavement sections may be neither practical nor favorable for the analysis; 

decomposing a contract into too many sections would result in too many observations in 

the dataset with the same characteristics, such as traffic and climate. Thus, in this thesis, 

1-mile-long pavement sections are used for analyzing treatment performance.  

 

For each pavement section, information on the parameters of interest, namely, 

performance indicators, traffic, climate, pavement type, and layer thicknesses, was 

collected for all years subsequent to the treatment application. This type of data structure 

is a combination of time-series and cross-sectional data, typically referred to as panel data 

(Washington et al, 2011). Pavement data constitute a special case of panel data referred to 

as repeated measures data because it typically consists of multiple condition 

measurements in time for the same observation unit (Davidian and Giltinan, 1995), in this 

case, the pavement section.  

 

As demonstrated in Figure 3.1 for pavement rehabilitation data, contracts within 

the same rehabilitation treatment are constructed in different points in time and consist of 

different numbers of pavement sections: contract 1 was constructed in year   over 𝑗 miles 

(which correspond to 𝑗 pavement sections in this case) while contract   was constructed in 

year  ′ over 𝑗′ miles. To conduct an analysis regarding the performance of Treatment 1, 

the available information on pavement condition (supposing data on pavement condition 

is available up to year X) would be collected for all available contracts (contracts 1 to  ). 

The analysis period for a specific contract begins at the year of the treatment application 

and ends at the year at which the most recent condition data are available, if there has 

been no another rehabilitation treatment applied during this time period. For contract 1, 

which was constructed in year  , the analysis period is       years; for contract  , 

which was constructed in year  ′, the analysis period is     ′  years. Assuming that 

 ′   , there are more condition measurements over time for contract 1 compared to 

contract  . In the case where the number of repeated measurements is the same for all 
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contracts and all pavement sections within a contract, the dataset is referred to as a 

balanced panel dataset (Greene, 2002). In the case of this thesis, the analysis period 

differs among contracts within a specific treatment, which renders the dataset unbalanced. 

Also, a second treatment application can be another source of imbalance; namely, within 

a specific contract, pavement rehabilitation contracts can include numerous pavement 

miles which may result in having some pavement sections rehabilitated after some years 

and others not rehabilitated until the year of the most recent condition data.  This concept 

is illustrated in Figure 3.1, where it is shown that the analysis period of Section 1 ends in 

year   whereas the analysis period of Section 𝑗 ends in year  ∗. In panel data analysis, 

unbalance is treated as a form of missing data and affects the outcome; for this reason, 

modeling techniques specifically developed for unbalanced panel data should be used 

when analyzing data on pavement treatment performance. 

 

It becomes clearer now that pavement rehabilitation data combine a set of 

characteristics that makes its analysis quite challenging. To recap this discussion this far, 

these characteristics are summarized below: 

 

 Information on a specific treatment appears in the form of numerous 

treatment applications (contracts). Each contract is assumed to comprise  

multiple pavement sections; for each pavement section, multiple condition 

measurements are available. As such, each observation in the dataset is 

uniquely specified by three characteristics: the contract to which it refers, a 

pavement section within the given contract, and a time measurement within 

the given pavement section. This leads to a three-level nested structure as 

illustrated in Figure 3.1.  

 

 The analysis period can differ from contract to contract or from pavement 

section to pavement section. This leads to an unbalanced repeated-measures 

data structure.  
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Pavement rehabilitation includes a wide variety of treatments. A rehabilitation 

treatment may be applicable for a specific type of pavement (e.g., thin HMA overlay is 

used for AC pavement rehabilitation) or for all pavement types (e.g., structural HMA 

overlay). Pavement engineers in public highway agencies typically combine their 

experience on pavement rehabilitation with information about the pavement section that 

is planned to be rehabilitated and the existing budgetary constraints to choose the 

treatment to be applied. In the best case scenario, a life-cycle cost analysis is conducted 

and the optimal rehabilitation strategy is defined for the life of the asset. Thus, treatment 

selection is a rather complicated process, which could introduce serious bias in the effort 

to compare the effectiveness of different treatments or to estimate the effectiveness of 

one treatment using information from already-applied treatments.  

 

It is important to realize that treatments are not randomly applied to pavement 

sections. There is a tendency to apply structurally stronger treatments to pavements that 

are in poor condition or have high traffic loads and “lighter” treatments to pavements in 

relatively superior condition or that have lower traffic loads. In recognition of this 

underlying decision-making procedure in treatment selection, the following inferences 

can be made: 

 

 For datasets comprising data from different treatments, a statistical 

comparison of treatment performance may not be easily carried out in a 

straight forward manner because the assumption of completely-randomized 

design does not hold. 

 

 Even when data from each treatment is analyzed separately (which is the 

context of this thesis), treatment effectiveness comparisons should be 

conducted with caution because of the possibility of selectivity bias.  

 

The problem of selectivity bias in rehabilitation treatment analysis is recognized 

and emphasized in this section so that pavement managers are aware that the prediction 
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models and service life estimates coming from self-selected samples are conditional (not 

a representation of the population). However, selectivity bias correction is not within the 

scope of this thesis and will not be addressed.   

 

 

3.3. Rationale for Using Mixed Linear Modeling in Performance Modeling for PMS 

The choice of method for rehabilitation treatment analysis for PMS on the basis of 

the nature of pavement data, practicality, precision, and the purposes for which the results 

will be used, is the key to successful development of a methodology for predicting 

rehabilitation treatment performance. Taking into account the PMS information needs 

regarding rehabilitation treatment analysis (presented in Section 3.1) and the pavement 

rehabilitation data characteristics (presented in Section 3.2), mixed linear modeling 

techniques were chosen to serve as the basic building blocks of the developed 

methodology.  

 

Mixed models have some advantages compared to approaches previously used in 

pavement management. First of all, they have the ability to incorporate the complex 

multi-level structure of pavement data in the analysis, account for possible unobserved 

characteristics among observations within the same contract or within the same pavement 

section (unobserved heterogeneity) and allow for serial correlation correction, which is 

typically needed in analyzing repeated-measures data. Second, mixed models assume that 

the observations in the sample are a part of a larger population. In the case of pavement 

rehabilitation, this is an important characteristic because it allows the use of these models 

to predict the performance of pavement segments that are slated for rehabilitation at some 

future year. Last but not least, mixed models can provide highly reliable predictions 

regarding the performance of in-service previously-rehabilitated pavements as well as the 

performance of future projects; for these purposes, they deploy two different methods, 

namely, Best Linear Unbiased Prediction and Best Linear Unbiased Estimate.  
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The previously-mentioned advantages of mixed models are herein discussed in 

detail and their theoretical justification is provided in the next sections.  

 

 

3.4 Mixed Linear Model Theory 

In a typical regression analysis, a phenomenon is observed multiple times in space 

or time and the purpose is to explain and predict it through a number of explanatory 

variables that are assumed to partially cause this phenomenon. A general linear model 

that describes this typical setup can be written in matrix form as follows (Littell et al, 

2006): 

 

    +   (3.1) 

 

where   is the vector of responses (representing the phenomenon to be explained),   is 

the vector of explanatory variables,   is the fixed-effects parameter vector to be 

estimated and   is the unobserved vector of random errors. An important assumption of 

the general linear model is that the random errors are independent and identically 

distributed according to the normal distribution with mean 0 and variance    (Littell et al, 

2006): 

   

           (3.2) 

 

The assumption that random errors are independent and identically distributed 

does not hold for all data structures. In repeated-measures data, errors that belong to the 

same individual (pavement section in the context of this thesis) may be correlated or may 

have unequal variances.  

 

The mixed model is an extension of the general linear model to allow for random 

effects and correlation among responses. Random effects are random variables that 

represent unobserved characteristics shared within the observations of a specific group, 
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typically referred to in the literature as unobserved heterogeneity (Washington et al, 

2011). The correction for serial correlation is based on the recognition that the random 

errors within a specified group can be correlated; the correction imposes a structure on 

the actual correlations through the estimation of covariance matrix R (Littell et al, 2006).  

 

 

3.4.1. General Mixed Linear Model Formulation 

The general mixed linear model can be written in matrix form as follows 

(Henderson, 1963): 

  

    +   +   (3.3) 

       ) (3.4) 

       ) (3.5) 

 

where   is the vector of responses,   is the vector of explanatory variables,    is the 

fixed-effects parameter vector to be estimated,   is a vector of constants that describe the 

structure related to the random effects,   is the vector of random variables representing 

the random effects,   is the vector of random errors,   is the covariance matrix of the 

random effects   and   is the covariance matrix of the random errors. The model is 

termed “mixed” to reflect the presence of both fixed effects ( ) and random effects ( ).  

 

A key assumption of the mixed model is that   and   are not correlated 

(Washington et al, 2011):  

 

   [   ]    (3.6) 

 

Hausman’s test for random effects is recommended for use in checking the 

validity of the assumption in Eq. 3.6 (Washington et al, 2011). If the assumption does not 

hold, a fixed effects model could be a more appropriate alternative. The fixed effects 

model accounts for unobserved heterogeneity by estimating a fixed constant for each 
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group (observations from the same pavement section, in the context of pavement data) 

and allows this constant to be correlated with the random errors (Greene, 2002).  

 

Although the fixed effects model seems to be inherently less restrictive, some 

characteristics of the model make it impractical and thus, inappropriate to use in a PMS. 

First of all, the model cannot produce parameters for explanatory variables whose values 

do not vary within a group (Allison, 2005). In pavement performance analysis, this would 

mean that the variables representing attributes constant for a specific pavement section, 

(e.g., climate, average traffic, pavement material characteristics, and layer thicknesses) 

cannot be included in the model. Moreover, the model estimates as many constants as 

there are units (in the context of this thesis, pavement sections) in the data; and this 

makes the use and storage of the model quite challenging (Allison, 2005). The 

combination of these extenuating characteristics render the model incapable of describing 

and predicting the behavior of pavement sections that are not included in the dataset used 

for the analysis, such as sections to be rehabilitated in the future. For these reasons, fixed 

effects models were not considered for use in this thesis.  

 

 

3.4.2. Estimation Methods for Mixed Models 

There are numerous methods for estimating covariance parameters in mixed 

models, such as generalized least squares (GLS), feasible generalized least squares 

(FGLS), maximum likelihood (ML) and restricted maximum likelihood (REML). GLS 

estimation is successful for a small number of groups and a small number of observations 

within a group (Baltagi, 1985); therefore, modified GLS approaches, such as FGLS, or 

maximum likelihood estimations are preferred (Washington et al, 2011). An important 

property of ML and REML methods is that they accommodate data that are missing at 

random (a case of unbalanced panel data), which make them more appropriate for this 

thesis (Rubin, 1976; Little, 1995). REML is generally preferred over ML because the 

random effects covariance parameters are adjusted for the degrees of freedom and are 
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thus less biased (Allison, 2011). For these reasons, REML was chosen as the estimation 

method for the mixed models proposed in this thesis.  

 

Based on the REML technique, the log-likelihood function to be maximized is as 

follows (Littell et al, 2006): 

 

         
 

 
   | |  

 

 
   | ′    |  

 

 
 ′     

   

 
         (3.7) 

 

where   is the variance of   estimated as      [ ]     ′ +  ,   is the residual 

vector estimated as        ′             ,   is the rank of  , and   is the 

sample size.   and   are clearly defined in Section 3.4.1. 

 

The statistical software used in this thesis, SAS 9.2 (The SAS Institute, 2009), 

minimizes the log-likelihood function (Eq. 3.7) by using a ridge-stabilized Newton-

Raphson algorithm. 

 

 

3.4.3 Prediction Methods for Mixed Models 

As stated in Section 3.1, the rationale for using advanced methods for modeling 

pavement performance within a PMS framework is the need for accurate predictions 

regarding the performance of in-service pavement sections as well as the performance of 

future projects. Specifically, for pavement rehabilitation, pavement managers need to be 

aware of the condition of the rehabilitated pavement sections, the average effectiveness 

of a past rehabilitation treatment, and the expected effectiveness of a treatment if applied 

to a specific pavement section in the future. Mixed model estimation offers the ability to 

estimate “realized values of random variables” through a method called Best Linear 

Unbiased Prediction (BLUP), which was first developed by Henderson (1963) and was 

theoretically justified as an extension of the Gauss-Markov theorem by Harville (1976). 
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The basic concepts of this method and its importance on pavement performance 

prediction are discussed in this section. 

 

The general linear mixed model in matrix form (Eq. 3.3) is:     +   +  . 

The expected value of   can be given as follows:   

 

 [ ]   [  +   +  ]     (3.8) 

 

since the vector of random effects,  , and the vector of error terms,  , are normally 

distributed with the mean equal to zero. This expectation of   is a population-wide 

average and can be called unconditional expectation (Littell et al, 2006).  

 

The conditional expectation of   given   is as follows: 

 

 [ | ]    +    (3.9) 

 

As can be seen from Eq. 3.9 the conditional expectation refers to the mean of   

specific to the random effects observed in the sample.  

 

The concept of conditional and unconditional expectation of   in mixed models 

has been investigated by many researchers, which led to the determination of estimators 

and predictors with the minimum mean squared error (Searle, 1971; Harville, 1988; 

Robinson, 1991; McLean et al, 1991). In the case of unconditional expectations, it has 

been shown that 𝒌  ̂  is the best linear unbiased estimate (BLUE) of      (or more 

appropriately, the empirical best linear unbiased estimate (EBLUE) since the covariance 

matrices   and   are not known), where      is the unconditional expectation of 

observation  , and 𝒌  is the vector of explanatory variables with respect to  . The best 

linear unbiased estimator of  ,  ̂, is given as follows (Littell et al, 2006):  

  

 ̂    ′ ̂         ̂   (3.10) 
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where  ̂ is the estimated variance of   .  

 

In the case of conditional expectations, it has been shown by Henderson (1963) 

that the best linear unbiased predictor (BLUP) of    |   (or the empirical best linear 

unbiased predictor (EBLUP)) is as follows: 

 

𝒌  ̂  +  ′ ̂  𝒌  ̂  +    ̂   ̂       ̂  (3.11) 

 

where 𝒌  and  ′ are the vectors of the explanatory variables and constants respectively, 

that describe the structure related to the random effects related to observation  , and  ̂ is 

the estimated covariance vector of the random effects.  

 

To take into account the uncertainty in the estimation of covariance matrices   

and  , several bias corrections regarding the predictions have been proposed (Littell et al, 

2006). The standard error adjustment for fixed effects proposed by Kenward and Roger 

(1997) was chosen for this thesis based on the recommendations of Littell et al (2006).  

 

It was shown that mixed models can offer two different kinds of predictions:  

conditional and unconditional. The implications of this capability are of paramount 

importance with regard to the application of these techniques in pavement management. 

As mentioned previously, regarding pavement rehabilitation, pavement managers need all 

of the following three pieces of information: 

 

1. prediction of the short-term and long-term post-rehabilitation performance of 

in-service pavement sections, 

2. average effectiveness of each rehabilitation treatment, and 

3. pavement performance prediction if a given rehabilitation treatment is applied 

to a specific pavement section in the future. 
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The first necessary item above for pavement management refers to pavement 

sections that have been rehabilitated in the past; thus, their information is included in the 

treatment analysis dataset, which allows section-specific predictions conditional on the 

observed random effects (𝒌  ̂  +  ′ ̂) to be obtained using the BLUP method. The 

BLUP method highly increases the accuracy of these in-sample predictions, which has 

been shown in pavement data analysis by Yu et al (2007) and will be illustrated in the 

case study in Section 3.6.  

 

The ability to accurately predict the future performance and service life of in-

service pavements directly gives pavement managers the ability to assess the future 

network needs for maintenance and rehabilitation activities with higher certainty and 

reduces risk and uncertainty in the processes of programming and budgeting. BLUPs and 

confidence limits can be estimated automatically during the model estimation process, 

which makes the procedure quick and practical.  

 

The second necessary estimation for pavement management refers to population-

wide treatment performance and service life expectations. In order to obtain these 

estimates the BLUE method should be used since there is usually no pavement section in 

the dataset that can be assumed to represent the “average pavement section.” This method 

actually suggests using only the fixed effects part of the mixed model (𝒌  ̂) to obtain the 

desired predictions. To estimate the average treatment effectiveness, sample averages can 

be used for the vector of the explanatory variables (𝒌 ) as long as they are considered 

representative of the population.  

 

Last but not least, pavement managers need to know the expected performance 

and service life of a treatment if selected for a new project, thereby enhancing and 

facilitating the decision-making process of future treatment applications. These 

performance and service life estimates refer to pavement sections to be rehabilitated in 

the future; however, information on these sections does not exist in the analysis sample 

and estimation thus will be based on the unconditional estimation approach. To estimate 
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the expected performance and service life in this case, the fixed effects part of the model 

(𝒌  ̂) will be used, while the vector of explanatory variables (𝒌 ) should include the 

specific characteristics of the pavement to be rehabilitated in the future.  

 

In summary, the prediction methods that involve mixed models have great 

potential to offer more reliable deterministic results and can accommodate the 

information needs of pavement management. This capability is probably the greatest 

advantage of incorporating a mixed model methodology in pavement management.     

 

 

3.5 Applicability of Mixed Linear Models in PMS 

In the previous sections, the theoretical background of mixed linear models was 

discussed. The nature of these models is such that they provide a high level of flexibility 

in selecting appropriate formulations to fit a specific data structure. In the following 

sections, the formulations that are considered appropriate, based on the characteristics of 

pavement rehabilitation data, are described.  

 

 

3.5.1 The One-Way Random Effects Model 

For a given pavement section, unobserved heterogeneity could represent 

information that was not collected but has an important effect on the deterioration process. 

Such information could be the thickness of different pavement layers, maintenance and 

rehabilitation history, quality of the contractor, and weather conditions on the day of the 

treatment application. Gathering data to include all these attributes is costly. Therefore, 

existing PMS databases typically include basic information for modeling pavement 

performance, such as data on pavement condition and traffic. Thus, it is important to use 

models that can account for unobserved factors of the pavement deterioration process. An 

example of such a model is the one-way random effects model.  
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The one-way random effects model has been extensively used for panel data 

analysis in pavement research. This model has been reported in literature as the random 

effects model or two-level hierarchical linear model (Littell et al, 2006). In general, this 

model assumes that there are unobserved characteristics (unobserved heterogeneity) 

among the observations from a given individual (pavement section in the context of this 

study) or among the observations from different individuals for a given time period; the 

intercept term of the regression model can be assumed to capture any individual or time 

heterogeneity included in the panel data (Hsiao, 2003). Most studies on pavement 

performance prediction that included the use of mixed models have used random effects 

to correct for individual heterogeneity bias (Madanat et al, 1997; Madanat and Shin, 1998; 

Yu et al, 2007; Chu and Durango-Cohen, 2008; Nakat et al, 2008; Hong and Prozzi, 2010; 

Aguiar-Moya et al, 2011), since observations within a given pavement section are more 

likely to share unobserved effects than different pavement sections at given points in time.  

 

The formulation of the one-way random effects model for unbalanced panel data 

can be written as follows (Greene, 2002): 

 

     𝒋  +   +    ,     𝑗                   (3.12) 

         
   (3.13) 

          
   (3.14) 

 

where 𝑗 refers to pavement sections;   is the total number of pavement sections in the 

sample;   refers to the time periods available for the pavement section 𝑗;    is the analysis 

period for the pavement section 𝑗,     is the performance of the pavement section 𝑗,   

years after rehabilitation;   is the     vector of parameters to be estimated;  𝒋  is the 

    vector of the explanatory variables;    is the unobserved heterogeneity term which 

is randomly distributed across individuals but constant through time for the same 

pavement section; and     is the random disturbance term. Both    and     are assumed to 

be normally distributed with constant variances   
  and   

 , respectively. 
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As mentioned in Section 3.4.1, a key assumption of this model is that    is 

uncorrelated with the explanatory variables ( [  | ]   ); and the validity of this 

assumption can be checked with the Hausman’s test (Washington et al, 2011).  

 

The one-way random effects model accounts for possible unobserved 

heterogeneity regarding the observations within the same pavement section. However, the 

typical structure of pavement rehabilitation data presented in Figure 3.1 implies that  a 

strong possibility for unobserved effects exists among the observations that belong to the 

same contract. As such, a more appropriate model that accounts for the structure of the 

pavement rehabilitation data is necessary. This is discussed in the next section.  

 

 

3.5.2. The Three-Level Nested Linear Model 

The one-way random effects model has been used by many researchers for 

pavement performance modeling because it can accommodate a simple panel data 

structure. However, data on pavement rehabilitation treatments inherently constitute a 

rather complicated structure (demonstrated in Figure 3.2); and the one-way random 

effects model therefore may be inadequate to fully describe the underlying phenomena.  
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Figure 3.2 Three-level Nested Data Structure for a Specific Treatment 

 

To analyze the performance of a rehabilitation treatment, information on past 

contracts must be collected. As discussed in Section 3.2, a contract typically comprises 

multiple pavement sections. Then, for a specific pavement section, there are multiple 

performance measurements over time for that pavement section. As shown in Figure 3.2, 

pavement section 𝑗 is one of the pavement sections that constitute contract  , and time   

refers to an observation in time for pavement section 𝑗 of contract  . These relationships 

among the observations are consistent with a three-level nested structure.  

 

In this thesis, a mixed model is used to accommodate this nested structure because 

it is reasonable to postulate that unobserved characteristics exist at both the contract level 

and the pavement section level. Observations that belong to the same contract may share 

similar unobserved characteristics, such as the quality of the applied treatment, and other 

characteristics related to that treatment application. Thus, individual instances of 

treatment applications under the same treatment name may display significant differences 

in their outcomes. For example, the actual thickness of an overlay may differ across the 

overlay contracts. Small differences in the new overlay thickness can have a significant 

impact on future pavement condition (Bardaka and Karlaftis, 2012); however this 

information is rarely repeated. Regarding the observations that belong to the same 

Contract i • 1st Level 

Pavement 
Section j 

• 2nd Level 

Time t • 3rd Level 
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pavement section, possible unobserved heterogeneity may be related to a lack of 

information on the pavement section layer thicknesses before the treatment, the subgrade 

quality, the maintenance and rehabilitation history, and the weather conditions on the day 

of the treatment application.  

 

The formulation of the three-level nested linear model for unbalanced panel data 

can be written as follows (Littell et al, 2006):  

 

      𝒊𝒋  +   +      +       ,            𝑗                     (3.15) 

         
   (3.16) 

            
   (3.17) 

             
   (3.18) 

 

where   refers to a specific contract,   is the total number of contracts in the sample, 𝑗 

refers to a specific pavement section within contract  ,    is the total number of pavement 

sections within contract  ,   refers to a specific observation in time for section 𝑗,     is the 

total number of years of available pavement performance information for section 𝑗 from 

contract  ,      is the performance of pavement section 𝑗 within contract     years after 

rehabilitation,   is the     vector of the parameters to be estimated,  𝒊𝒋  is the     

vector of the explanatory variables,    is the effect of the  th
 contract,       is the effect of 

pavement section 𝑗 from contract  , and        is the random error term.  

 

Random effects and errors are assumed to be normally distributed with constant 

variances (Eq. 16-18). Also, zero correlation is assumed between any two measurements 

in time within a pavement section. This assumption may be considered too restrictive in 

the case of pavement data. If serial correlation exists, this assumption could be relaxed in 

order to represent more accurately the relationships among the observations within the 

same section. The next section discusses this issue.  
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3.5.3 Serial Correlation Correction in Repeated-Measures Data 

Pavement monitoring in a PMS includes collection of performance information 

for the pavement network, often at equally-spaced points in time and, typically, every one 

or two years. Several years of monitoring result in datasets with multiple performance 

measurements on the same pavement section; these datasets are characterized by panel 

data termed repeated measures (Davidian and Giltinan, 1995). In this thesis, repeated 

measures appear under the second level of the data structure shown in Figure 3.2 and 

refer to the multiple performance observations at a given pavement section.  

 

Most repeated measures data (as such repeated measures data at a given pavement 

section) are typically correlated (Davidian and Giltinan, 1995). However, the covariance 

structure that describes the relationships between pairs of repeated measures has not been 

adequately investigated in previous studies on pavement performance modeling. Most of 

the mixed model formulations for pavement deterioration deployed by previous studies 

have used the one-way random effects model presented in Section 3.5.1.  This model is 

estimated under the assumption of the variance components structure; and the same 

covariance structure is assumed by the three-level nested linear model presented in 

Section 3.5.2. The variance components structure assumes that repeated measurements 

within a pavement section are not correlated and have a constant variance, and is written 

as follows (The SAS Institute, 2009):  

 

























1

0...1

0...01

0...001

2



  (3.19) 

 

where    is the variance of the random error     ,    [    ], which remains constant for 

any     . 
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This simplified covariance structure is probably the least appropriate structure for 

repeated measurements. Typically, two measurements in adjacent points in time tend to 

be more highly correlated than two observations taken in points further away in time (Ott 

and Longnecker, 2008). The least restrictive covariance structure that can be used in 

repeated measurements analysis is called an unstructured covariance model and is written 

as follows (Littell et al, 2006):  

 



























2

2

3
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2

2

11312
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1

max
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max
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...

...

...

t

tt

t

t













  (3.20) 

 

where      is the maximum number of years of repeated measurements available in the 

sample,   
  is the variance of measurements taken one year after rehabilitation,     is the 

covariance between the measurement taken one year after rehabilitation and that taken 

two years after rehabilitation, and so on.  

 

As can be seen in the covariance matrix of Eq. (3.20), every within-pavement-

section error is specified to have its own variance, and every within-pavement-section 

pair of errors is specified to have its own covariance (Littell et al, 2006). Although this 

model assumes no structure for the covariance matrix and estimates the actual 

relationships without any restrictions, it dramatically increases the model estimation time 

and requires the estimation of           +      parameters (this amounts to 91 

parameters for a dataset with      = 13). For these reasons, it is important to adopt a 

structured approach for the covariance matrix if serial correlation is detected and 

addressed. 

 

One of the simplest covariance structures that can be used is referred to as 

compound symmetry (Littell et al, 2006). Under the assumption of compound symmetry, 
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the variance-covariance matrix of the repeated measures for a pavement section is 

modeled as follows (Littell et al, 2006): 

 

 






















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1

...1

...1

...1

2









  (3.21) 

 

where    is the variance of     ,    [    ], which remains constant for any     , and   is 

the correlation between any two measures on the same pavement section. The covariance 

between any two measures on the same section,    [          ], is equal to     and is the 

same for all pairs of repeated observations. Compound symmetry requires the estimation 

of only two parameters (   and  ); however, it is not certain that it adequately describes 

the actual relationships among repeated measures.  

 

The need to investigate the covariance structure of repeated performance 

measurements in pavement data analysis has been identified by at least one study. 

Archilla (2006), with rutting as the performance indicator, used the first-order 

autoregressive model as an appropriate covariance structure to correct for serial 

correlation in pavement data. The covariance matrix assumed by the first-order 

autoregressive model is given as follows (Littell et al, 2006):  
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 (3.22) 
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where    is the variance of     ,    [    ], which remains constant for any     ,   is the 

correlation between any two adjacent errors within the same pavement section and      

is the maximum number of repeated measurements available in the sample. The first-

order autoregressive model assumes that the correlation between any two adjacent 

within-section errors remains constant and equal to  . Also, the correlation between any 

two errors that are two points in time apart remains constant and equal to   . Similarly, 

the correlation between any two errors that are   points in time apart is equal to   . 

Although this model requires the estimation of only two parameters (   and  ), it 

assumes decreasing correlations with increasing time lags, which is a more reasonable 

assumption for repeated measures compared to compound symmetry.  

 

Other possible covariance structures that could be used are the Toeplitz model and 

first-order ante-dependence model (a complete list of all possible structures can be found 

in The SAS Institute, 2009). The Toeplitz model assumes that all variances are the same 

and that the correlation between any two errors that are   points in time apart is equal to 

   (Littell et al, 2006): 
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The Toeplitz model is less restrictive that the autoregressive model but requires 

the estimation of      parameters. The first-order ante-dependence model is a more 

general structure that allows for unequal variances but requires the estimation of    

        parameters (Littell et al, 2006):  
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 (3.24) 

 

The question becomes how to effectively choose the appropriate structure. One 

solution is to repeat the analysis multiple times with different structures each time and to 

measure the difference in model fit with likelihood ratio tests. However, this approach 

requires a significant amount of effort and time. Littell et al (2006) proposed a graphical 

approach for identifying appropriate structures. The approach is illustrated in Section 

3.6.2 as part of a case study. In general, this approach requires estimating the 

unstructured covariance model and plotting the estimated covariance parameters in order 

to identify possible covariance trends.  

 

Using an appropriate covariance structure is crucial for the unbiased estimation of 

standard errors in a repeated measurements analysis (Guerin and Stroup, 2000). 

Surprisingly, very little research related to pavement performance modeling has been 

conducted in this area. One of the objectives of this thesis is to explicitly illustrate the 

steps that lead to choosing an appropriate covariance structure and to propose the 

structure that is most likely to be an accurate representation of post-rehabilitated 

pavement data. This will facilitate the work of pavement managers who will consider 

adopting the performance modeling methodology proposed by this thesis. 

 

 

3.6. Case Study: Performance of Functional HMA Overlay Applications at Indiana 

Interstate Pavements 

This section demonstrates the application of the approaches presented in Section 

3.5 to pavement rehabilitation data collected as part of a research study conducted for the 

Indiana Department of Transportation (INDOT). The procedures of model formulation 
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selection, serial correlation correction for repeated measures, estimation of predictions, 

and results interpretation are demonstrated in detail here. The sample used for this case 

study includes information on rehabilitated Interstate pavements from the Indiana road 

network. Information on the sample and the modeling variables is shown in Tables 3.1 

and 3.2.  

 

Table 3.1 General Sample Description 

Highway Asset Type: Pavements 

Functional Class: Interstates 

Rehabilitation Treatment Type: Functional HMA Overlay 

Performance Indicator: International Roughness Index 

Performance Records Availability: 1995-2009 

Years of Treatment Applications: From 1996 to 2006 

Total Number of Treatment Applications 

(Contracts): 36  

Total Number of Rehabilitated Miles  

(Pavement Sections): 232 

Total Number of Observations in the Dataset: 1955 

Maximum Number of Years of Performance 

Records in the Dataset (Repeated Measures):  13 
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Table 3.2. Descriptive Statistics of Available Variables 

Variable Description 

(Variable Name) 
Unit Mean 

Standard 

Deviation 
Min Max 

International Roughness 

Index (IRI) 
in/mile 73.4 28.6 11.0 214.0 

IRI Before the Treatment 

Application  

(Pre-Treatment IRI) 

in/mile 90.8 34.7 43.0 278.5 

Number of Years After 

Treatment Application  

(Treatment Age) 

years 5.1 3.0 1.0 13.0 

Average Annual Daily 

Traffic (AADT) 
veh/day 52,361 38,112 10,328 180,419 

Average Annual Daily 

Commercial Vehicle 

Traffic
a
 

(Commercial Vehicles) 

veh/day 13,648 7,140 1,630 43,852 

Freeze Index 

(Freeze Index) 
degree-days 326.6 186.1 0.0 721.0 

Annual Precipitation 

(Precipitation) 
in/year 41.1 3.1 36.6 48.0 

a   Commercial Vehicle Traffic includes any vehicle that belongs to Categories 4-13 reported by the FHWA 

Vehicle Classification Scheme F Report.  

 

 

3.6.1. Selection of Model Formulation 

This section demonstrates the process of selecting the appropriate model 

formulation and interpreting the results. The statistical software used in this thesis is SAS 

9.2; and the code used to develop the models presented in this section is presented in 

Appendix A.  

 

The starting point was to develop a linear regression model for the performance of 

functional HMA overlay using IRI as the performance indicator. The model is formulated 

as follows:  
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        +   ,          (3.25) 

         
   (3.26) 

 

where       is the IRI for observation  ,    is the     vector of explanatory variables, 

  is the     vector of parameters to be estimated,    is the error term which is assumed 

to be normally distributed with mean 0 and variance   
 , and   is the sample size. 

 

The results of the regression model that yielded the best fit are shown in Table 3.3. 

The presented model was estimated with restricted maximum likelihood (REML) so that 

comparisons with the mixed models regarding the general fit can be easily made. OLS 

estimation was also performed and yielded parameter values that are consistent with 

those of REML.  

 

Table 3.3. Linear Regression Parameter Estimates of the Performance of Functional 

HMA Overlay (Performance Indicator: IRI) 

Variable Parameter Estimate t-Statistic Prob > | t | 

Constant,    -186.04 -20.43 < 0.0001 

Treatment Age [years] 3.592 23.35 < 0.0001 

Commercial Vehicles [1000veh/day] 0.957 14.23 < 0.0001 

Log(Pre-Treatment IRI) 96.19 29.64 < 0.0001 

Precipitation [inches/year] 1.029 6.86 < 0.0001 

Random Error Variance,   
  409.03 31.22

a
 < 0.0001

 a
 

Number of Observations,  : 1955 

Restricted Log-Likelihood: -8,651.5 

a   For the random error variance, SAS 9.2 performs a Wald Z-test.  

 

Table 3.3 shows the parameter estimates of the regression model for the 

performance of the functional HMA overlay and the tests of statistical significance (t-

statistic and Prob>| t |). The signs of the parameters imply that the higher are the age of 

the treatment, the number of commercial vehicles per day, the IRI before the treatment 

application, and the annual precipitation, the more deteriorated a pavement section. These 

results are consistent with expectation. Also, all of the estimates are statistically 

significant at a 99.99% confidence level.  
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Linear regression may not be an appropriate approach for unbalanced panel data. 

For this reason, previous studies on pavement performance modeling have proposed the 

use of the one-way random effects model. This model, which is presented in Section 

3.5.1, assumes that the observations that refer to a specific pavement section might share 

unobserved effects.  The term “unobserved effects” refers to factors that impact pavement 

performance after rehabilitation but have not been measured or for which there are no 

existing data that describe them, such as pavement layer thicknesses or weather 

conditions during treatment construction. The one-way random effects model was 

estimated with REML using the variables presented in Table 3.3 in order that 

comparisons of the general model fit could be made. The formulation of the one-way 

random effects model for this case study is as follows:  

 

       𝒋  +   +     

             +                   +                         +    

                            +                           +   +    ,  

𝑗                       

(3.27) 

         
   (3.28) 

          
   (3.29) 

 

As can be seen in Eq. 3.27, the fixed effects part of the model includes the 

constant (  ) and four explanatory variables; it should be noted that               and 

                       differ across pavement sections but not within the same 

pavement section. The term    represents the characteristics of the pavement section 𝑗, 

which are constant over time but unobserved, and the term    , which represents the 

random error of each observation.  

 

The variance component   
  measures the variation of the possible unobserved 

effects among pavement sections. If there is statistically significant variation, it will mean 
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that unobserved effects do exist and that this model formulation is more preferable than 

linear regression.  

 

Table 3.4. One-way Random Effects Model Parameter Estimates of the Performance of 

Functional HMA Overlay (Performance Indicator: IRI) 

Variable Parameter Estimate t-Statistic Prob > | t | 

Constant,    -184.70 -7.84 < 0.0001 

Treatment Age [years] 4.348 44.15 < 0.0001 

Commercial Vehicles [1000veh/day] 0.74 5.60 < 0.0001 

Log(Pre-Treatment IRI) 101.22 12.22 < 0.0001 

Precipitation [inches/year] 0.778 1.96  0.0515 

Pavement Section Variance,   
  312.74 10.07

a
 < 0.0001

a
 

Random Error Variance,   
  130.63 29.32

a
 < 0.0001

a
 

Number of Considered Groups: 232 (pavement sections) 

Number of Observations: 1955 

Restricted Log-Likelihood: -7,881.4 

a   For the random effects and error variance, SAS 9.2 performs a Wald Z-test.  

 

Table 3.4 shows the parameter estimates of the one-way random effects model for 

the performance of the functional HMA overlay and the tests of statistical significance (t-

statistic and Prob>| t |). The values of the parameters and their statistical significance 

display some differences with the linear regression model. Table 3.4 also shows the 

estimates of the two variance components and the associated statistic that tests if the 

variance is equal to zero. Based on the results from Table 3.4, it is concluded that 

individual unobserved heterogeneity exists and that random effects should be used to 

avoid estimation bias.  

 

Since the model is estimated using REML, the general fit can be evaluated by a 

likelihood ratio test where the log-likelihood of the model is compared to the log-

likelihood of a restricted model. In this case, the restricted model is the linear regression 

model presented in Table 3.3. The restricted model has one parameter fewer than the one-

way random effects model, which implies that the    statistic is    distributed with one 

degree of freedom. The    test statistic is estimated as follows: 
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               +                  

 

 For           , a confidence level of over 99.99% is obtained, which implies 

that the one-way random effects model is superior to the linear regression model.  

 

This thesis suggests the use of the three-level nested linear model presented in 

Section 3.5.2 as a more appropriate formulation that can accommodate the structure of 

the data related to pavement rehabilitation. The formulation of the model for this case 

study (using the same independent variables with the previously presented models) is as 

follows:  

  

        𝒊𝒋  +   +      +        

   +                    +                          +

                                    +                            +   +

                      +       , 

           𝑗                     

(3.30) 

         
   (3.31) 

            
   (3.32) 

             
   (3.33) 

 

This formulation assumes that observations within the same contract and 

observations within the same pavement section that belongs to a given contract share 

unobserved characteristics captured by    and      , respectively. The estimated 

parameters of the three-level nested linear model for the performance of the functional 

HMA overlay and the tests of statistical significance (t-statistic and Prob>|t|) are shown in 

Table 3.5. 
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Table 3.5. Three-Level Nested Linear Model Parameter Estimates of the Performance of 

Functional HMA Overlay (Performance Indicator: IRI) 

Variable Parameter Estimate t-Statistic Prob > | t | 

Constant,    -253.49 -6.94 < 0.0001 

Treatment Age [years] 4.411 43.65 < 0.0001 

Commercial Vehicles [1000veh/day] 0.602 3.62 0.0003 

Log(Pre-Treatment IRI) 125.60 14.79 < 0.0001 

Precipitation [inches/year] 1.365 1.70  0.0920 

Contract Variance,   
  344.96 3.57

a
 0.0002

a
 

Pavement Section Variance,   
  124.15 8.59

a
 < 0.0001

a
 

Random Error Variance,   
  130.54 29.33

a
 < 0.0001

a
 

Number of Considered Groups: 36 contracts, 232 pavement sections 

Number of Observations: 1955 

Restricted Log-Likelihood: -7,827.5 

a   For the random effects and errors variance, SAS 9.2 performs a Wald Z-test.  

 

The effects of Treatment Age, Pre-Treatment IRI, and Precipitation on treatment 

performance were found to be stronger in this model compared to the one-way random 

effects model. There were also some changes in the statistical significance of some of the 

variables. The interpretation of the variance components is paramount for this model 

selection process. Both the contract and pavement section variances (  
  and   

 ) are 

statistically significant, which supports the initial assumption regarding the three-level 

nested data structure.  

 

The high value of the contract variance parameter implies that the performance of 

different contracts differed significantly because of factors that were not observed. The 

variance at the contract level was also found to be higher than the variance at the 

pavement section level. Thus, the main source of variation for this sample was observed 

at the contract level, which implies that the one-way random effects model presented in 

Table 3.4 was probably not appropriate. However, the general fit of the model should 

also be evaluated by a likelihood ratio test. In this case, the restricted model was the one-

way random effects model presented in Table 3.4. The restricted model had one 

parameter fewer compared to the three-level nested linear model, which implies that the 
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   statistic is    distributed with one degree of freedom. The estimation of the    test 

statistic is as follows: 

 

               +                

 

For         , a confidence level of over 99.99% was obtained, which implies 

that the three-level nested linear model was superior to the one-way random effects 

model.  

 

In this section, the procedure of model formulation selection was demonstrated 

for one sample. It was concluded that the three-level nested linear model produced a 

superior fit compared to the other methodologies that were proposed by previous studies. 

However, generalized conclusions cannot be made one the basis of one sample; therefore, 

in Section 3.7, the different formulations are applied on multiple samples and inferences 

are made. The correction of possible serial correlation of the repeated measures data for 

this case study sample and the procedure of choosing an appropriate covariance structure 

are presented in the next section.  

 

 

3.6.2. Covariance Structure Analysis  

Repeated measures constitute a special case of panel data and refer to 

performance observations from multiple years at the same pavement section. The analysis 

of this type of data should include correction for serial correlation since the errors of 

repeated measures are typically correlated. To properly correct for serial correlation, 

there is a need to choose a suitable covariance structure that can be considered a good 

representation of the actual relationships between the pairs of repeated observations.  

 

In the previous section, the three-level nested linear model presented in Table 3.5 

was found to be the most appropriate formulation for describing the performance of the 

functional HMA overlay treatment. That model was estimated under the assumption of 
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variance components (a different variance component was estimated for each random 

effect). In this section, the correlations between the repeated observations within a 

pavement section are explored and appropriate covariance structures are proposed. The 

unobserved effects at the contract level are still estimated using variance components 

analysis. A graphical approach proposed by Littell et al (2006) is used herein to identify 

appropriate covariance structures for the repeated measurements; the code used to 

develop the models presented in this section is presented in Appendix B.  

 

The procedure begins by estimating the model presented in Eq. 3.30 under the 

assumption of unstructured covariance (Eq. 3.20). The model formulation and 

assumptions are as follows:  

 

        𝒊𝒋  +   +       ,               𝑗                     (3.34) 
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where   is the covariance matrix of      [            ], which reflects the relationships 

of the repeated observations within the same pavement section,   
  is the variance of 

measurements taken one year after rehabilitation,     is the covariance between the 

measurements taken one and two years after rehabilitation, and so on. The effects of 

contract   are assumed normally distributed with mean 0 and constant variance,   
 , 

exactly as in the model formulation presented in Eq. 3.30. 

 

 The unstructured covariance model required the estimation of 91 parameters for 

the presented case. The estimation required significant time even though the number of 

iterations was restricted to five. Ultimately, the convergence criteria were not met, which 
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did not constitute a serious problem because the results were used for diagnostic purposes 

only. The estimated variance and covariance parameters were plotted versus the time lag 

between them (Figure 3.3). 

 

 

Figure 3.3 Plot of Unstructured Covariance between Repeated Observations within a 

Pavement Section as a Function of Lag in Time 

 

Figure 3.3 shows the actual relationships between the repeated observations since 

the estimated model did not impose any structure to the covariances. The variances of the 

observations at each of the 13 instances correspond to the values plotted at a lag of zero. 

The remaining plotted values refer to the covariance values between the pairs of 

measurements taken in two different points in time after rehabilitation. For example, the 

line labeled as         refers to the relationship between the observations taken 13 years 

after rehabilitation with the rest of the observations within a pavement section; and the 

value for lag equal to zero is the variance,    
 , the value for lag equal to 1 is the 

covariance       , and so on. 
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It can be observed from Figure 3.3 that, in general, a covariance decreases when 

the lag in time increases, which means that the covariance of two measurements taken 

further apart in time can be relatively smaller than the covariance of two measurements 

taken closer in time. As mentioned in Section 3.5.3, it is typical for repeated measures to 

exhibit this trend in covariance values; and for this reason, over-simpified covariance 

structures should be avoided. Another important feature noted in Figure 3.3 is that the 

variances   
    

       
  (values for lag equal to zero) are not equal. Actually, based on 

the graph, higher variation can be seen among performance measurements taken many 

years after the treatment and smaller variation for measurements taken right after the 

treatment.   

 

In summary, the two major observations from Figure 3.3 are the decreasing 

covariances when time lag increases and the unequal variances. An appropriate 

covariance structure should be able to incorporate these natural trends of the data. The 

first-order ante-dependence model (Eq. 3.24) may be considered an accurate 

representation of the actual relationships between the repeated observations, because it 

allows for both decreasing covariances and unequal variances
1

. The new model’s 

formulation and assumptions are as follows: 

 

        𝒊𝒋  +   +       ,                𝑗                     (3.37) 
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 (3.39) 

 

                                                 
1
 Other structures with similar characteristics, such the Heterogeneous First Order Auto-Regressive and the 

Heterogeneous Compound Symmetry structures, were also tested but are not presented here because they 

did not lead to optimal results. 
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This formulation imposes a structure to the covariance matrix ( ), which is 

necessary for maintaining a reasonable estimation time and avoiding the estimation of an 

excessive number of parameters. The next step was to estimate the model, and plot the 

estimated covariances as a function of the time lag in order to check the validity of the 

assumptions.  

 

Table 3.6. Parameter Estimates of the Three-Level Nested Linear Model (First-Order 

Ante-Dependence Structure) for the Performance of Functional HMA Overlay 

(Performance Indicator: IRI) 

Variable Parameter Estimate t-Statistic Prob > | t | 

Constant,    -232.26 -7.17 < 0.0001 

Treatment Age [years] 4.863 24.26 < 0.0001 

Log(Pre-Treatment IRI) 117.84 15.57 < 0.0001 

Precipitation [inches/year] 1.368 1.92  0.0546 

Contract Variance Component,   
  278.68 3.53

a
 0.0002

a
 

Random Error Variance on Time 1,   
  152.45 8.93

a
 < 0.0001

a
 

Random Error Variance on Time 2,   
  219.61 8.77

a
 < 0.0001

a
 

Random Error Variance on Time 3,   
  225.04 8.77

a
 < 0.0001

a
 

Random Error Variance on Time 4,   
  253.25 8.74

a
 < 0.0001

a
 

Random Error Variance on Time 5,   
  354.14 8.60

a
 < 0.0001

a
 

Random Error Variance on Time 6,   
  346.61 7.91

a
 < 0.0001

a
 

Random Error Variance on Time 7,   
  359.12 7.58

a
 < 0.0001

a
 

Random Error Variance on Time 8,   
  547.16 6.79

a
 < 0.0001

a
 

Random Error Variance on Time 9,   
  586.63 6.30

a
 < 0.0001

a
 

Random Error Variance on Time 10,    
  718.41 5.91

a
 < 0.0001

a
 

Random Error Variance on Time 11,    
  827.53 5.11

a
 < 0.0001

a
 

Random Error Variance on Time 12,    
  779.65 4.73

a
 < 0.0001

a
 

Random Error Variance on Time 13,    
  996.45 4.69

a
 < 0.0001

a
 

Number of Considered Groups: 36 contracts, 232 pavement sections 

Number of Observations: 1955 

Restricted Log-Likelihood: -7,388.3 

a   For the random effects and errors variance, SAS 9.2 does not perform a t-test, but rather a Wald Z-test.  

 

Table 3.6 shows the parameter estimates of the three-level nested linear model for 

the performance of the functional HMA overlay, under the assumption of a first-order 

ante-dependence structure, and the tests of statistical significance (t-statistic and Prob>|t|). 
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First, the                     variable, which includes the average daily traffic of any 

vehicle that belongs to categories 4-13 reported by the FHWA Vehicle Classification 

Scheme F Report, was removed from the analysis because it was found to be not 

statistically significant. However, the presence of heavy trucks on the roadway typically 

accelerates pavement deterioration so if there were data available on the number of heavy 

trucks only or ESALs, the result could possibly be different. Moreover, it is not 

surprising to see variables that are statistically significant for one model become 

statistically insignificant when a more appropriately specified model is used. Regarding 

the remaining fixed parameters, the effect of treatment age on pavement deterioration 

was estimated 10.3% higher compared to the model shown in Table 3.5, while the effect 

of pre-treatment condition and precipitation did not change significantly.  

 

Unobserved heterogeneity shared by observations within the same contract was 

still estimated using random effects; and the variance component related to the 

unobserved contract effects,   
 , was found to be statistically significant, which verified 

the initial assumption for unobserved effects. Table 3.6 shows the variance of each of the 

repeated measures. The random error variance on time 1,   
 , refers to the variance of 

pavement performance (represented by IRI in this case) one year after the rehabilitation; 

and the remaining presented random errors variances can be similarly explained. It can be 

seen that the higher the number of years after rehabilitation the higher the variance. This 

result implies that during the initial years after rehabilitation, pavement performance 

varies less among pavement sections while there is much higher variation in performance 

among sections several years after rehabilitation. It can be also noted that the statistical 

significance of the error variances decreases with time after rehabilitation, possibly 

because there are a great deal more observations for the first years after the treatment 

application compared to the available observations for later years.    

 

Figure 3.4 shows the estimated covariance values between the repeated 

observations, as a function of the lag in time. Comparing Figure 3.3 (unstructured 

covariance) with Figure 3.4 (first-order ante-dependence), it can be seen that the two 
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figures share significant similarities. Thus, it can be concluded that the chosen imposed 

covariance structure successfully captures the observed trend of the actual covariance 

values.  

 

 

Figure 3.4 Plot of Covariance between Repeated Observations within a Pavement Section 

as a Function of Lag in Time (First-Order Ante-Dependence Structure) 

 

Last but not least, the general fit of the model can be evaluated using a likelihood 

ratio test
2
. In this case, the restricted model is the three-level nested linear model 

presented in Table 3.5. The restricted model has 23 parameters fewer compared to the 

model presented in Table 3.6, which implies that the    statistic is    distributed with 23 

degrees of freedom. The estimation of the    test statistic is as follows: 

 

               +                

 

                                                 
2
 Likelihood ratio tests cannot be conducted when the two models do not have the same number of fixed 

parameters. However, in this case, the removal of Commercial Vehicles did not significantly affect the 

REML of the model presented in Table 3.6. 
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For         , a confidence level of over 99.99% was obtained, which suggests 

that the three-level nested linear model with first-order ante-dependence covariance 

structure is superior to the three-level nested linear model (estimated under the variance 

components assumption).  

 

In this section, the procedure of serial correlation correction was demonstrated 

using post-rehabilitation data from Indiana Interstate pavements. It was shown that the 

actual relationships between repeated measurements within a pavement section display 

trends and characteristics that cannot be addressed using simple structures (note that the 

random effects models estimated in Section 3.6.2 assumed zero correlations between 

pairs of repeated measurements).  Thus, there is a need to identify an appropriate 

structure to avoid biased results. In Section 3.7, the methodology is applied to multiple 

samples in an effort to make more generalized conclusions about the covariance structure 

that can represent the typical structure and characteristics of pavement rehabilitation data, 

including its repeated-measure features.  

 

 

3.6.3. Mean Performance Predictions and Service Life Estimates 

The idea of investigating advanced performance modeling techniques stems from 

the need for unbiased pavement performance estimators in order to achieve effective 

pavement management. As mentioned in Section 3.4.3, mixed models present the 

opportunity for making two types of performance predictions: mean (population-wide) 

and conditional to a specific pavement section. This section focuses on the first prediction 

type and demonstrates how to acquire mean performance predictions and service life 

estimates.  

 

Mean performance predictions can be used in pavement management to predict 

treatment performance for pavement sections that are planned for rehabilitation in the 

future; data from these sections thus have not been part of the model estimation process. 

These predictions can be called “population-wide” because they refer to the entire 
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pavement network of a state or a region and not to the specific sections that were 

included in the analysis. In order to acquire mean predictions, only the fixed part of a 

mixed model is used. The previous section revealed that the three-level nested linear 

model with the correction for serial correlation fitted the data best, and was therefore 

used for making predictions. The fixed part of the model can be written as follows: 

  

           +                      +                      + 

           +                                  
(3.40) 

 

It can be seen that this equation can be used exactly as a regression equation. The 

difference is that these parameters are unbiased because they come from an estimation 

procedure that takes into account the special nature of the pavement rehabilitation data. 

Eq. 3.40 can be used to acquire performance predictions for a pavement that will be 

rehabilitated in the future using a functional HMA overlay. For example, suppose that an 

INDOT pavement manager seeks to identify which treatment to apply on a specific 

Interstate pavement section and would like to know how the functional HMA overlay 

would perform. In this case, the specific characteristics of the Interstate would be simply 

substituted into Eq. 3.40. Suppose that the precipitation in the area is 40.24 in/year, the 

IRI before rehabilitation is 118 in/mile, and the pavement manager is interested in 

predicting the performance 15 years after the treatment application. This can be estimated 

as follows:  

 

           +           +              + (               )

                

 

This point estimate along with confidence limits can be easily obtained 

automatically. For this, a code is presented in Appendix C. For this point estimate, the 95% 

confidence limits were 131.82 in/mile (lower limit) and 147.94 in/mile (upper limit). 
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Another important use of the fixed part of mixed models regarding pavement 

rehabilitation performance is the estimation of average treatment service life. Treatment 

service life can be defined as the time period between treatment application and the point 

when pavement performance reaches a pre-specified threshold that indicates the need for 

another application of the same or different treatment (Labi et al, 2005). A point estimate 

of the average service life of the functional HMA overlay can be estimated by using 

population average values for the independent variables and a threshold value for IRI, as 

follows:  

  

                    +                     +        

                                          +                                  
(3.41) 

 

As can be seen in Eq. 3.41, inverse prediction is necessary in order to obtain a 

service life estimate. This implies that confidence intervals for service life cannot be 

obtained because a statistical method for obtaining confidence intervals for estimates 

coming from inversing a multivariate linear model has not been developed (Kutner et al, 

2005). However, it is not incorrect to obtain estimates and confidence limits of the 

average pavement performance at different treatment ages (the SAS code is presented in 

Appendix C) and then to plot them in order to establish boundary values for service life, 

as shown in Table 3.7 and Figure 3.5. 

 

Table 3.7 Average Pavement Performance Estimates and 95% Confidence Limits with 

regard to Treatment Age based on Eq. 3.40 

Treatment Age 
Average

a
 IRI 

Estimate 95% Lower Limit 95% Upper Limit 

12 109.8 102.6 117.0 

13 114.7 107.2 122.1 

14 119.5 111.9 127.2 

15 124.4 116.5 132.3 

16 129.3 121.0 137.5 

17 134.1 125.7 142.6 

18 139.0 130.2 147.8 

a Estimated using the sample average values for Precipitation and Pre-Treatment IRI 
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Figure 3.5 Graphical Method for Determining the Range of Functional HMA Overlay 

Service Life 

 

Figure 3.5 shows a graphical technique to obtain information on the range of 

treatment service life. Thus, regarding the service life of functional HMA overlay on 

Interstate pavements, the following three things can be concluded:  

 

 The average service life of the treatment is 14.2 years, if an IRI of 120 in/mile is 

assumed as the performance threshold. 

 

 There is 95% certainty that, after 12.6 years after the treatment application, the 

average treatment performance will be equal to or higher than the performance 

threshold. This implies that, on average, treatment service life can be as low as 

12.6 years.  

 

Range of 

Service Life 

Pre-Treatment IRI = 86in/mile 

Precipitation = 41.07mm 
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 There is 95% certainty that, 15.8 years after the treatment application, the average 

treatment performance will be lower or equal to the performance threshold. This 

implies that, on average, treatment service life can be as high as 15.8 years.      

 

In summary, it was found, based on 95% confidence limits for pavement 

performance, that the average service life of the functional HMA overlay for Interstate 

pavements is between 12.6 and 15.8 years, with an average of 14.2 years. 

 

 It should be noted that service life highly depends on the pre-specified 

performance threshold. For example, if the performance threshold for IRI is assumed to 

be 130 in/mile, the average service life will be equal to 16 years.  

 

Although pavement managers would probably claim that a threshold of 120 

in/mile is low, this threshold was chosen for two reasons. First, pavement performance 

data are aggregated per mile; thus, an average IRI of 120 in/mile for a one-mile section 

may mean a much higher IRI exists for smaller segments inside this section. Second, and 

most importantly, the fact that there are typically a great deal more observations that refer 

to the early ages of rehabilitation treatments (observations with relatively low IRI values) 

reduces the ability of models to accurately predict high IRI values, as shown in Figure 3.6. 
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Figure 3.6 Comparison between Observed and Predicted IRI for the Three-Level Nested 

Linear Model with First-Order Ante-Dependence Covariance Structure (Table 3.6) 

 

Figure 3.6 is a plot of the observed (actual) IRI values from the sample used for 

this case study versus the population-wide predictions acquired by the model presented in 

Table 3.6. The figure shows that most pavement sections observed to have actual IRI 

values higher than 120 in/mile are predicted to have IRI values lower than 120 in/mile 

(values inside the circled area). Thus, the performance threshold regarding the average 

service life estimates is chosen mainly based on data availability on the later ages of the 

treatment and should be adjusted in the future when additional measurements become 

available.  

 

 

3.6.4. Performance Predictions for Past-Rehabilitated In-Service Pavements 

In the previous section, the estimation procedure and the usefulness of population-

wide predictions in pavement management were demonstrated using the functional HMA 
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overlay treatment data from Indiana Interstate pavements. This section demonstrates the 

concept and the use of performance predictions conditional on a pavement section which 

can be obtained by using the BLUP method (Section 3.4.3).  

 

Best Linear Unbiased Prediction (BLUP) is a method specifically developed for 

mixed models that can be used to estimate the “realized values of random variables” for 

the individuals (i.e., the contracts and pavement sections for this thesis) included in the 

analysis dataset. The model used in the previous section for the population-wide 

predictions, used serial correlation correction for the repeated measures at the pavement 

section level. However, the BLUP method, as proposed by Henderson (1963) and 

employed by the statistical software available in the market, has not been modified to be 

able to incorporate correction for serial correlation. The theoretical background for this 

correction is available. If the mixed model is corrected for serial correlation, then the 

BLUP forecast would be the estimate of the conditional mean plus a serial correlation 

factor (Frees, 2004). This corrected BLUP forecast has not been incorporated in statistical 

software yet and therefore must be done manually at this time. Therefore, it would be 

unreasonable to attempt a manual correction in this thesis because the scope is to propose 

a methodology that can be applicable to PMS. Thus, there is a need to identify which of 

the developed models is more appropriate to use for obtaining in-sample performance 

predictions.   

 

The models that will be compared are the three-level nested linear model (results 

in Table 3.5), which uses random effects at the contract and pavement section levels, and 

the three-level nested linear model with a first-order ante-dependence covariance 

structure (results in Table 3.6), which uses random effects only at the contract level. In 

order to compare the two models, the conditional performance predictions on the 

pavement sections included in the analysis (BLUPs), which are estimated automatically 

during the model estimation procedure in SAS, were plotted versus the observed 

performance (Figures 3.7 and 3.8).  
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Figure 3.7 Comparison between Observed and Predicted IRI with the Method of Best 

Linear Unbiased Prediction for the Three-Level Nested Linear Model (Table 3.5) 

 

 

Figure 3.8 Comparison between Observed and Predicted IRI with the Method of 

Best Linear Unbiased Prediction for the Three-Level Nested Linear Model with First-

Order Ante-Dependence Covariance Structure (Table 3.6) 
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When Figure 3.7 is compared to Figure 3.8, it becomes clear that the predictions 

obtained from the model that uses random effects both at the contract and the pavement 

section levels (Figure 3.7) were much closer to the observed performance values. This 

result was expected because the BLUP method incorporates the “realized” values of 

random effects into the prediction process; therefore, if a part of the variation is not 

explained by simple random effects (without serial correlation correction), it cannot be 

incorporated, and as a result the conditional predictions are not very accurate.  

 

To understand the meaning and usefulness of section-specific performance 

predictions, some examples follow based on the sample used for this case study. Table 

3.8 compares the roughness predictions for one pavement section (Interstate 74, miles 4-5) 

from the analysis sample, which were obtained using linear regression and the three-level 

nested linear model (for this, the SAS code is presented in Appendix C). 

 

Table 3.8 Comparison between Linear Regression Predictions and BLUPs from the 

Three-Level Nested Linear Model for Interstate-74, Miles 4-5, Rehabilitated in 2001 

Treatment 

Age 

Pavement Performance After Rehabilitation, represented by IRI [in/mile] 

Observed Linear Regression
a
 3-Level Nested Linear Model

b
 

5 48 81 53 

6 57 85 57 

7 50 89 62 

8 58 91 66 

9 62 95 70 

10 - 98 74 

11 - 102 79 

12 - 105 83 

13 - 109 88 

14 - 112 92 

15 - 116 96 

a Predictions are obtained by using the model presented in Table 3.3 

b Predictions are obtained using the BLUP method on the model presented in Table 3.5 

 

Linear regression does not have the capability of producing conditional 

predictions, which makes the results not practical in pavement management. On the other 
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hand, the predictions obtained from the mixed model are related to the observed 

roughness measurements through the BLUP method and are therefore more accurate.  

 

Pavement managers need to be aware of the condition of rehabilitated assets so 

that they can effectively program future rehabilitation activities. The inability to reliably 

predict the need for future activities regarding in-service previously-rehabilitated 

pavements may lead to underestimation or overestimation of budgetary needs. For 

example, for the Interstate pavements that had received functional HMA overlay 

treatments during the years 1996 to 2006, the time of future treatment re-application was 

estimated as shown in Figure 3.9. 

 

 

Figure 3.9 Need for Future Rehabilitation Activities of Indiana Interstate Pavement 

Sections in which Functional HMA Overlay had been Applied (Last Available 

Performance Records: 2009) 

 

It can be seen in Figure 3.9 that simplified approaches, such as linear regression, 

can produce a misleading picture of a network’s needs. Specifically, linear regression 
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predicted that most sections will need to be rehabilitated after 2017, and that a minimal 

number should be rehabilitated before 2015. For this reason, the use of mixed models in 

pavement management is highly encouraged and could lead to substantial benefits. The 

possible benefits of the mixed model methodology for network level needs assessment 

are investigated in Chapter 4.  

   

 

3.6.5 Summary of Results 

In this case study, data from Indiana Interstate pavements that had been 

rehabilitated with functional HMA overlay were used for demonstrating rehabilitation 

treatment analysis using mixed models. Specifically, the process of selecting the 

appropriate modeling formulation was presented and resulted in the selection of the three-

level nested linear model. Then, the correction of serial correlation was illustrated and an 

appropriate covariance structure was chosen. Last but not least, the two types of 

performance predictions (population-wide and conditional) and their usage were 

demonstrated in detail. This case study serves as a demonstration of the discussed mixed 

models estimation procedures and not as a means to make inferences on the methodology. 

The following sections focus on making inferences and propose a methodology for 

pavement rehabilitation analysis.  

 

 

3.7 Validation of Mixed Linear Modeling Formulations 

In order to be able to make sound comparisons among the different approaches, 

there is a need for a larger-scale application. In this section, the techniques initially 

presented in Section 3.5 are applied to Indiana Interstate pavement data that refer to the 

rehabilitation treatments shown in Table 3.9.  
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Table 3.9 Characteristics of Available Data on Indiana Interstate Rehabilitation for 

Testing of Modeling Techniques. 

Rehabilitation Treatment 

Total Number 

of Treatment 

Applications 

(Contracts) 

Total Number of 

Rehabilitated Miles  

(Pavement Sections) 

Total Number of  

Observations in 

the dataset 

Preventive Maintenance  

(Thin HMA Overlay) 
10 89 621 

Structural HMA Overlay  

(Multiple Structural 

Layers) 

5 40 354 

Functional HMA Overlay
a
 

(Mill Surface and HMA 

Overlay) 

36 232 1955 

Crack and Seat PCC and 

HMA Overlay 
2 6 65 

Repair PCC and HMA 

Overlay 
12 72 694 

Rubblize PCC/Composite 

and HMA Overlay 
4 41 330 

PCC Overlay on PCCP 2 8 98 

a The data related to this treatment have been used for the case study 

 

As can be seen in Table 3.9, information was collected for seven rehabilitation 

treatments that were applied to Indiana Interstate road segments in the period 1996-2006. 

The information available for some of these treatments was very limited, but knowing 

this fact will be of assistance in revealing possible restrictions of the different statistical 

formulations under investigation.   

 

First, it was investigated whether there was a need to model the three-level data 

structure that was shown in Figure 3.2. To determine if such a need exists to take into 

account this structure, two statistical tests were considered. The first was a test of the 

statistical significance of the variance estimates of the unobserved effects at the contract 

and pavement section levels. If both estimates were statistically significant, it could be 

implied that the three-level nested linear model should be used. If only one of the 
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variance estimates was statistically significant, it would mean that there was no need to 

model the three-level structure and that the one-way random effects model was sufficient. 

The results of the variance components test of statistical significance were combined with 

the results from a likelihood ratio test, which examines if there is an improvement in the 

general fit of a model in order to make a decision about the most appropriate formulation 

to be adopted.  Both tests were demonstrated in Section 3.6.1 of the case study.  

 

This procedure was followed for all available rehabilitation treatment samples 

(Table 3.9) and the results are shown in Table 3.10.  

 

Table 3.10 Modeling Formulation Choice for the Available Rehabilitation Treatment 

Datasets 

Rehabilitation Treatment 
Linear 

Regression 

One-Way 

Random 

Effects 

Three-Level 

Nested Linear 

Model 

Preventive Maintenance 

(Thin HMA Overlay) 

 
 x 

Structural HMA Overlay 

(Multiple Structural Layers) 
  x 

Functional HMA Overlay 

(Mill Surface and HMA Overlay) 
  x 

Crack and Seat PCC, and HMA 

Overlay 
x   

Repair PCC and HMA Overlay   x 

Rubblize PCC/Composite and HMA 

Overlay 
 x  

PCC Overlay on PCCP  x  

 

The following inferences can be made from Table 3.10:  

 

 The three-level nested structure was found to be unnecessary for modeling the 

treatment datasets that contained information on less than four contracts. It is 

therefore reasonable to assume, in general, that the rehabilitation data structure 

should be taken into account unless the number of treatment applications (contracts) 
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is too small (less than five) to allow any variation among the applications to be 

captured.  

 

 For the data regarding Rubblized PCC/Composite and HMA Overlay and PCCP on 

PCC Pavement, the one-way random effects model was found to be superior to 

linear regression since the variation among different pavement sections was 

statistically significant. 

 

 For one treatment’s dataset (Crack and Seat and HMA Overlay), it was found that it 

is not necessary to consider any kind of unobserved effects, and linear regression 

therefore was considered appropriate. This result can be attributed to the limited 

amount of data for that treatment (i.e., the smallest dataset containing a total of 65 

observations). 

 

As a next step, it was investigated in which datasets there was a need to correct 

for serial correlation of the error terms of the repeated measurements within a pavement 

section, and which covariance structure was more appropriate. The procedure that needed 

to be followed for this investigation was demonstrated in detail in the case study in 

Section 3.6.2. Table 3.11 presents the chosen covariance structures as a result of the serial 

correlation correction for each sample. 
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Table 3.11 Covariance Structure Choice for the Within-Pavement-Section Error Terms 

Rehabilitation Treatment 
First-Order 

Autoregressive Structure 

First-Order Ante-

Dependence Structure 

Preventive Maintenance 

(Thin HMA Overlay) 
 x 

Structural HMA Overlay 

(Multiple Structural Layers) 
 x 

Functional HMA Overlay 

(Mill Surface and HMA 

Overlay) 

 x 

Repair PCC and HMA Overlay  x 

Rubblize PCC/Composite and 

HMA Overlay 
x  

PCC Overlay on PCCP x  

 

Table 3.11 includes only two covariance structures; however, several others were 

tested. The first-order autoregressive structure was found to be more suitable for the 

datasets that lacked a sufficient number of treatment applications and/or observations. For 

the datasets that did not suffer from limited information, the first-order ante-dependence 

structure was found to be more appropriate. This change in structure choice because of 

the sample size was undertaken because the first-order ante-dependence structure 

required the estimation of ~ 20 more parameters compared to the first-order 

autoregressive structure. The number of parameters estimated in a model determines the 

sample size appropriateness (Tanaka, 1987); but there is no exact answer to the question 

of which sample size is considered appropriate for estimating a specific number of 

parameters, because it typically depends on the data. Based on the results from the 

datasets used in this thesis, the first-order ante-dependence structure should not be used 

for samples with less than ~ 500 observations. 

 

 

3.8. Proposed Methodological Framework of Rehabilitation Treatment Analysis for PMS 

Figure 3.10 presents the methodological framework proposed by this thesis for 

analyzing data on pavement rehabilitation treatment performance. For the purposes of 
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illustration and ease of comprehension, the procedure is presented for observations from 

a single pavement family and a single rehabilitation treatment, which can be repeated for 

multiple families and treatments. The presented framework is designed to serve as a 

further improvement of the existing methods used for treatment performance prediction 

in highway agencies and also to serve as a catalyst for integrating project level and 

network level management.  

 

It is also proposed that the presented methodology should not replace but rather 

complement the network-level probabilistic approaches in pavement management, such 

as the use of Markov chains or risk-based survival analysis for network-level physical 

and monetary needs assessment. This recommendation is made because the developed 

framework can provide reliable information regarding which of the specific assets will be 

in need of preservation at each future year, rather than general information only about the 

network performance and overall magnitude of future needs. The proposed framework 

consists of the following steps: 

 

Step 1.  Data Collection 

The first step is to collect the data required for the analysis. The considerations at this 

step are as follows: (i) data from individual pavement sections that comprise each 

rehabilitation contract, which are the observed post-rehabilitation performance 

measurements at each pavement section; and (ii) selection of performance indicator(s)
3
 

that adequately represent pavement performance or deterioration, which are purposely 

selected to capture the healing effect of the treatment. These indicators include IRI, 

rutting, PCR, and cracking. Clearly, there is no point in selecting a performance indicator 

that is not affected by the rehabilitation treatment; and (iii) collection of data on the 

factors of pavement deterioration, including traffic, climate, and pavement-related factors 

(presented in detail in Section 2.4). 

                                                 
3
 This methodology was developed for using one performance indicator for modeling rehabilitation 

treatment performance. The analysis can be repeated for obtaining models for other performance indicators 

for the same treatment. However, previous research has proposed the use of seemingly unrelated equations 

for such a case (Prozzi and Hong, 2006; Anastasopoulos et al, 2012).  
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Figure 3.10 Methodological Framework of Rehabilitation Treatment Performance 

Prediction for PMS (Constraints and Sample Size Limitations Based on the Datasets used 

for Validation in Section 3.7) 
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Step 2. Mixed Model Formulation 

In this step, the pavement performance, in terms of the selected performance indicator, is 

modeled as a function of the explanatory variables. The model formulation is selected on 

the basis of a number of sample-related constraints, which emerged from the validation of 

the proposed methodology (Section 3.7). If there is an adequate number of contracts in 

the sample (more than five), the three-level nested linear formulation is proposed; 

otherwise, the one-way random effects model can be used.  

 

Step 3. Serial Correlation Correction 

After deciding on the mixed model formulation, correction for serial correlation is carried 

out. The correction imposes a covariance structure on the repeated-measures data. The 

covariance structure is selected on the basis of a single constraint that is related to the 

sample size. 

 

Step 4. Treatment Performance Prediction 

(a) Treatment Performance Equation and Service Life Estimates 

The fixed part of the model estimated in Step 3 (performance equation) is used for 

predicting the treatment performance for pavement assets that will receive rehabilitation 

at a future year and for treatment service life estimates. The procedure for this is 

presented in Section 3.6.3. 

(b) Best Linear Unbiased Prediction (BLUP) 

The BLUP method is used to obtain in-sample performance predictions (predictions for 

in-service previously rehabilitated pavement assets, which are included in the analysis 

sample). These predictions are based on the model estimated in Step 2, and the 

justification for this is provided in Section 3.6.4. 

 

Step 5. Network Needs Assessment 

This step analyzes the network physical and monetary needs with regard to the 

previously-rehabilitated pavements using the pavement section-specific predictions 
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obtained from using the BLUP method in Step 4, as inputs. This analysis is presented in 

Chapter 4.  

 

 

3.9 Limitations of Proposed Methodology 

The limitations of the framework proposed in Section 3.8 are herein discussed: 

 

 

3.9.1 Nature of the Performance Indicator 

The methodology is developed for performance indicators that are continuous 

variables. This is not a serious limitation for pavement management because most 

measures of pavement performance (e.g., IRI, rutting, cracking, and friction) are 

continuous variables. Also, pavement condition indexes with 0-100 scale, such as PCR, 

are modeled as continuous. However, the methodology is not appropriate for ordered 

discrete performance indicators, such as the Present Serviceability Index (PSI). 

 

 

3.9.2 Form of Deterioration Function 

For relating the pavement deterioration indicator to the explanatory variables, the 

models presented in this chapter assume that the relationship function is intrinsically 

linear. In other words, the function is either linear or is a non-linear function that can be 

easily transformed into a linear function. The latter includes non-linear functions that are 

amenable to Box-Cox transformations (such as logeY, 1/Y, √Y, etc). For example, if the 

performance trends suggest the use of an exponential function, the natural logarithm of 

the performance indicator, logeY, is used as the dependent variable. Also, intrinsically- 

linear functions include polynomials, where the indices of the variable are not in unity 

but can be transformed into linear functions using new variables; for example, Y = 

W
2
+Z

0.5
 becomes Y = X1 +X2, where X1 = W

2
 and X2 = Z

0.5
. For other types of non-
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linearity, a different theoretical background is implied and linearization may be difficult; 

for such types, it is difficult to analyze them using the presented methodology.     

 

 

3.9.3 Data Availability 

As discussed in Section 3.7, the selection of the mixed model formulation and 

covariance structure type is strongly dependent on data availability. Therefore, as more 

information regarding treatment applications becomes available, a simplified version of 

the framework presented in Figure 3.10 can be used (Figure 3.11). 
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Figure 3.11 Methodological Framework of Rehabilitation Treatment Performance 

Prediction for PMS Assuming Full Availability of Data 

 

 

3.9.4 Statistical Software Limitations 

As discussed in Section 3.6.4, the modification of the BLUP method, which adds 

a serial correlation correction factor in the conditional predictions, has not yet been 
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BLUP method become available, the framework presented in Figure 3.10 should be 

modified, as shown in Figure 3.12. 

 

 

Figure 3.12 Methodological Framework of Rehabilitation Treatment Performance 

Prediction for PMS Assuming No Software Limitations (Constraints and Sample Size 

Limitations Based on the Datasets used for Validation in Section 3.7) 
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3.10 Chapter Summary 

A methodological framework for pavement rehabilitation treatment analysis 

developed specifically for pavement management requirements and purposes, taking into 

cognizance the unique spatio-temporal nature of pavement rehabilitation and condition 

data, was presented in this chapter.  

 

The peculiar nature of pavement rehabilitation data was first described. It was 

shown that information on a specific treatment appears in the form of a three-level nested 

structure: contracts (first level), pavement sections (second level), and performance 

measurements (third level). Then, the rationale for using mixed models in performance 

modeling for PMS was discussed. The theory of mixed linear models was presented with 

a focus on the general formulation of the models, the available estimation approaches, 

and the prediction methods and their importance to pavement management.  

 

Regarding the applicability of mixed linear models in PMS, two formulations 

were identified as relevant: (1) the one-way random effects model, and (2) the three-level 

nested linear model. The necessity for serial correlation correction in repeated-measures 

pavement data was then discussed and numerous covariance structures were presented 

and described in detail. A case study was used to demonstrate analytically the procedure 

for selecting a mixed model formulation, the analysis of covariance structure, and two 

methodologies for obtaining predictions. 

 

Using multiple samples from different rehabilitation treatments, it was concluded 

that the three-level nested linear model with a first-order ante-dependence covariance 

structure is most appropriate for analyzing data on pavement rehabilitation treatment 

performance under the following conditions: the sample has more than ~500 observations 

in total and the data comes from more than ~5 contracts. The proposed methodological 

framework was presented in Section 3.8, and its limitations were discussed in Section 3.9. 

The next chapter presents the impacts of using the proposed framework for the estimation 

of future network-level rehabilitation needs. 
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CHAPTER 4 IMPACTS OF PROPOSED PERFORMANCE PREDICTION 

FRAMEWORK ON FUTURE REHABILITATION NEEDS ESTIMATION 

Pavement management is a systematic process for maintaining the condition of 

pavement assets at an optimal level of service.  When the network-level and project-level 

management, which comprise this systematic process, are integrated and occur in a 

coordinated framework, the system can achieve optimal holistic management. In an 

integrated system, a change in one of the system components will have an impact on the 

other system components. Thus, a methodological framework regarding a system 

component for incorporation in a PMS framework should not be proposed without 

evaluating the possible impacts to the other system components to ensure that the 

methodology is beneficial for the overall system. For this reason, this chapter analyzes 

the impacts of the proposed performance prediction framework on future rehabilitation 

needs assessment. 

 

In Chapter 3, a framework for rehabilitation treatment performance prediction 

was proposed for incorporation in a pavement management set of tools and techniques. It 

was also shown that the developed methodology successfully accommodates the 

pavement rehabilitation data structure in the estimation procedure, thus avoiding 

significant estimation bias and enabling it to produce more reliable performance 

predictions. This chapter investigates the impacts of the proposed methodology on future 

rehabilitation needs assessment which is one of the key outputs of PMS. Specifically, the 

study investigates whether the performance predictions produced using the proposed 

methodology – because of their greater accuracy – can reduce the uncertainty involved in 

carrying out age-based and performance-based needs assessment analyses. 
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4.1 PMS Preservation Needs Assessment 

Pavement preservation is a general term that typically refers to the maintenance 

and rehabilitation activities that are applied to pavement assets in order to maintain them 

at the desired level of service. Pavement managers seek to give answers to four questions 

regarding future preservation activities: (i) which assets are in need for preservation, (ii) 

which treatment is the most suitable to be applied, (iii) what is the preservation cost, and 

(iv) when should preservation take place (Sinha and Labi, 2012). Assessing the future 

preservation needs for the entire pavement network is not an easy task for pavement 

managers and requires information about the network inventory, the preservation cost, 

the preservation history of the assets, and other aspects depending on the approach 

chosen for determining the network physical and monetary needs.  

 

 Sinha and Labi (2013) identified three alternative methods for assessing the 

preservation needs of an asset network on the basis of: (i) historical spending, (ii) 

preservation treatment service lives, and (iii) asset performance. Assessing the network 

needs based on historical spending is the simplest method that can be applied and 

requires the least amount of information. However, this method does not take into 

account possible changes in the network inventory, performance standards, and 

preservation strategies, and may produce biased results if the time span of historical 

spending does not adequately represent the past trends (Labi et al, 2006). Because of the 

limitations of the historical trend-based needs assessment approach, the approach is not 

suggested for application in a PMS (Sinha and Labi, 2012).  

 

Another possible method utilizes the average service lives of various treatments 

for assessing the future preservation needs, which assumes that all assets will exhibit the 

same performance behavior after a treatment application. This approach, which is 

described as the age-based needs assessment method, can be considered superior to the 

historical trends method, but is also prone to serious limitations (Sinha and Labi, 2012). 

Post-rehabilitation performance depends on several exogenous factors as well as 

unknown factors, as shown in Chapter 3. On the other hand, not all highway agencies can 
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incorporate computationally-demanding approaches in their operations at the current time. 

As such, the age-based approach can be used successfully if the treatment service lives 

are reliably estimated; and this approach will be further discussed in Section 4.2. The 

extent to which higher accuracy in treatment service lives estimates can reduce the 

uncertainty in determining future preservation needs will also be discussed.  

 

Assessing network-level needs based on the future performance of each asset is 

probably the most computationally intensive but most reliable approach of the needs 

assessment approaches (Sinha and Labi, 2012). This proposed methodology for asset 

performance prediction is expected to increase the reliability of the performance-based 

needs assessment method. In Section 4.3, this proposed performance prediction 

methodology’s impact on predicting future physical and monetary preservation needs is 

investigated.  

 

 

4.2 Impact of Treatment Service Life Estimation Method on the  

Age-Based Approach for Needs Assessment  

Preservation needs assessment at the network level can be accomplished under the 

assumption that each pavement asset should be preserved after a certain time period; and 

that time period would correspond to the service life of the most recent preservation 

treatment that was applied to the asset. As such, this age-based approach assumes that 

there is negligible variability in post-treatment performance among the pavement assets 

and uses estimates of treatment service lives to define when the need for preservation will 

arise for each asset (Sinha and Labi, 2012). Because of this assumption, this approach 

may not be very reliable; however, it remains probably the best option for highway 

agencies that face difficulties in deploying a performance-based method. It can be 

hypothesized that increased accuracy in the estimation of treatment service life has a 

direct and positive effect on the reliability of network preservation needs estimation. This 

hypothesis is investigated in this section using the data from Indiana Interstates that were 
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used in Section 3.7 to test the proposed methodology for pavement performance 

prediction. 

 

Figure 4.1 presents the general framework of the age-based approach. The first 

step is to define a horizon period, based on the agency’s long-range plan (Sinha and Labi, 

2012). At the next step, the remaining service life of each pavement asset is defined by 

combining inventory information on the pavement assets that comprise the network (what 

the last preservation treatment was and when it was applied) with the service life 

estimates of preservation treatments.  In this way, the physical needs for each pavement 

unit (when there is a need to preserve the asset and which treatment should be used) are 

established. Finally, cost models are used to estimate the cost of the needed activities and 

are applied to the physical needs estimations in order to determine the monetary needs for 

each year of the horizon period. 

 

 

Figure 4.1 Framework for Pavement Preservation Needs Assessment on the Basis of 

Treatment Average Service Lives (Sinha and Labi, 2012) 
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The reliability of this age-based approach is limited because average service life 

estimates are used instead of specific performance predictions for each asset. Moreover, 

the uncertainty introduced in the analysis through the cost models and the treatment 

service life estimates increases the risk of inaccurate prediction of future needs.  

 

In Section 3.6.3, a method for acquiring treatment service life estimates from 

mixed linear models was illustrated. These estimates are more accurate than the estimates 

acquired from simplistic – compared to the complex structure of  pavement rehabilitation 

data – analyses, such as linear regression analysis. To investigate the sensitivity of the 

predicted preservation needs to changes in treatment service life estimates, the latter were 

first estimated using linear regression models and mixed linear models, each model type 

was used to estimate the future needs, and their results were compared with each other. 

 

Tables 4.1 and 4.2 present the average service lives of six rehabilitation 

treatments applied to Indiana Interstates estimated from the linear regression model and 

the mixed linear performance model. The procedure for obtaining the service life 

estimates and the upper and lower bounds for service life was demonstrated in Section 

3.6.3 for mixed linear models. The same procedure can be followed to obtain estimates 

from linear regression.  

 

The service life results indicated that there is significant selectivity bias in the 

estimated performance models for some of the treatments. For example, the service life 

of PCC Overlay on PCCP, which is based on two contracts (but multiple pavement 

sections), was found to be very low using either of the two estimation methods. A closer 

look at the sample used for this treatment analysis showed that the treatment was applied 

in areas where the commercial vehicle traffic was very high, which probably caused the 

more rapid pavement deterioration. Thus, the average treatment service life is biased and 

refers only to pavement assets with high truck traffic. Moreover, the unusually high 

service life for the structural HMA overlay also seems to imply a self-selected sample.  
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Table 4.1 Rehabilitation Treatment Service Life Estimates and Bounds for Linear 

Regression Performance Models 

Rehabilitation Treatment 
Rehabilitation Treatment Service Life 

Average Lower Limit
a
 Upper Limit

b
 

Preventive Maintenance  

(Thin HMA Overlay) 
12 11 13 

Structural HMA Overlay 60 50 70 

Functional HMA Overlay 18 17 19 

Repair PCC and HMA Overlay 17 16 18 

Rubblize PCC/Composite and 

HMA Overlay 
31 27 35 

PCC Overlay on PCCP 12 11 14 

a Treatment age when the 95% upper limit of pavement performance reaches the pre-specified threshold 

(120 in/mile). 

b Treatment age when the 95% lower limit of pavement performance reaches the pre-specified threshold 

(120 in/mile). 

 

 

Table 4.2 Rehabilitation Treatment Service Life Estimates and Bounds for Mixed Linear 

Performance Models
a
 

Rehabilitation Treatment 
Rehabilitation Treatment Service Life 

Average Lower Limit
b
 Upper Limit

c
 

Preventive Maintenance  

(Thin HMA Overlay) 
15.5 13 18.5 

Structural HMA Overlay 32 24 40 

Functional HMA Overlay 14 12.6 15.8 

Repair PCC and HMA Overlay 23 20 26 

Rubblize PCC/Composite and 

HMA Overlay 
29.5 25 34 

PCC Overlay on PCCP 12.5 9 20 

a The modeling formulations and covariance structures used are the ones shown in Tables 3.10 and 3.11.  

b Treatment age when the 95% upper limit of pavement performance reaches the pre-specified threshold 

(120 in/mile). 

c Treatment age when the 95% lower limit of pavement performance reaches the pre-specified threshold 

(120 in/mile). 
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The average treatment service lives estimated on the basis of linear regression and 

mixed linear performance models are compared in Figure 4.2. The first noticeable item in 

Figure 4.2 is that the linear regression results for the structural HMA overlay are highly 

unreasonable. Moreover, the linear regression performance models for 50% of the 

treatments overestimated the service lives; and for the other 50%, the treatments 

underestimated the service lives (assuming that the mixed linear model results are more 

accurate), which showed that there was no specific trend in the loss of accuracy.  

 

 

Figure 4.2 Comparison of Average Treatment Service Lives Obtained Using the Two 

Performance Modeling Techniques   

 

The next step, using the average treatment service lives, was to identify the 

pavement assets that need to be preserved. The period 2010-2020 was the assumed 

horizon period, and the year of latest collected performance and traffic data was 2009).  

For this study, it was assumed that a pavement asset was going to be rehabilitated using 

the same treatment utilized at its last rehabilitation.  Furthermore, this analysis did not 
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cover the entire Indiana Interstate network, but rather only the Interstates rehabilitated 

from 1996 to 2006.  

 

Table 4.3 shows the Indiana Interstate pavement sections that were rehabilitated 

during the period 1996-2006, and that had not been rehabilitated for a second time or 

reconstructed until 2009. The information shown in Table 4.3 is the only asset inventory 

information that was needed to perform this age-based needs assessment analysis.  

 

Table 4.3 Indiana Interstate Rehabilitation Activities for the Period 1996-2006 

Rehabilitation 

Treatment 

Number of Interstate Pavement Sections 

Total 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 

Preventive 

Maintenance 
47   11 12 15   9    

Structural 

HMA Overlay 
29  10  13    6    

Functional 

HMA Overlay 
95 16 14  15 16  25 5 4   

Repair PCC and 

HMA Overlay 
43 11 11  8   8  5   

Rubblize 

PCC/Composite 

and HMA 

Overlay 

33  8 2    8 15    

PCC Overlay 

on PCCP 
8 2 6          

Total 255 29 49 13 48 31 0 41 35 9 0 0 

 

Using the inventory information from Table 4.3 and the treatment service lives 

from Tables 4.1 and 4.2, the physical needs, based on the two methods of service life 

estimation (Linear Regression and Mixed Linear performance models), are presented in 

Tables 4.4 and 4.5.  

 

Based on the results shown in Table 4.4, 171 Interstate pavement sections could 

be expected to need rehabilitation during the horizon period of 2010-2020. The results 

shown in Table 4.5 indicate that 170 pavement sections will need to be rehabilitated 

during 2010-2020. Thus, the difference between the total Interstate sections predicted by 

the two methods is not significant.  
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Table 4.4 Physical Needs
a
 Assessment Based on Treatment Average Service Lives 

Estimated from Linear Regression Performance Models (Table 4.2) 

Rehabilitation 

Treatment 

Number of Interstate Pavement Sections 

Total 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 

Preventive 

Maintenance 
47 11 12 15   9      

Structural 

HMA Overlay 
0            

Functional 

HMA Overlay 
86     16 14  15 16  25 

Repair PCC and 

HMA Overlay 
38    11 11  8   8  

Rubblize 

PCC/Composite 

and HMA 

Overlay 

0            

PCC Overlay 

on PCCP 
0            

Total 171 11 12 15 11 27 23 8 15 16 8 25 

a Future needs for the Interstates rehabilitated from 1996 to 2006 

 

Table 4.5 Physical Needs
a
 Assessment Based on Treatment Average Service Lives 

Estimated from Mixed Linear Performance Models (Table 4.3) 

Rehabilitation 

Treatment 

Number of Interstate Pavement Sections 

Total 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 

Preventive 

Maintenance 
47     11 12 15   9  

Structural 

HMA Overlay 
0            

Functional 

HMA Overlay 
95 16 14  15 16  25 5 4   

Repair PCC and 

HMA Overlay 
22          11 11 

Rubblize 

PCC/Composite 

and HMA 

Overlay 

0            

PCC Overlay 

on PCCP 
6 6           

Total 170 22 14 0 15 27 12 40 5 4 20 11 

a Future needs for the Interstates rehabilitated from 1996 to 2006 

 

Figure 4.3 compares the annual physical needs on the basis of the two methods for 

acquiring service life estimates. For certain years, the difference between the needs 

predicted from the two methods is significant. 
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Figure 4.3 Comparison of Predicted Physical Rehabilitation Needs of Indiana Interstate 

Pavements on the Basis of Two Treatment Service Life Estimation Methods  

 

The unit cost of each treatment for Interstates is estimated as the total contract 

cost of treatment applications divided by the number of rehabilitated miles (Table 4.6). 

Using the estimated physical needs (Tables 4.4 and 4.5) and the average unit costs 

presented in Table 4.6, the monetary needs for the Indiana Interstates analyzed in this 

study for the period 2010-2020 were estimated. Figures 4.4 and 4.5 present the annual 

and cumulative monetary needs based on the service life estimates acquired from the 

linear regression and mixed linear performance models, respectively. 
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Table 4.6 Unit Cost
a
 of Rehabilitation Treatments Based on Interstate Applications 

Rehabilitation 

Treatment 

Number of 

Contracts 

Unit Cost per Interstate Pavement Section 

Average 
Standard 

Deviation 
Minimum Maximum 

Preventive 

Maintenance 
10 $277,968 $425,660 $28,984 $1,530,616 

Structural HMA 

Overlay 
5 $401,649 $441,370 $ 41,597 $1,100,522 

Functional HMA 

Overlay 
36 $328,920 $426,839 $24,347 $1,797,386 

Repair PCC and 

HMA Overlay 
12 $1,290,499 $858,795 $147,296 $2,737,662 

Rubblize 

PCC/Composite 

and HMA Overlay 

4 $2,706,956 $2,065,620 $360,000 $5,974,972 

PCC Overlay on 

PCCP 
2 $5,552,922 $1,331,677 $4,611,284 $6,494,559 

a Source: 1996-2006 Data from INDOT Contracts Division 

 

 

Figure 4.4 Annual and Cumulative Monetary Needs of Indiana Interstate Pavements on 

the Basis of Service Life Estimates from Linear Regression Performance Models 

 

 



www.manaraa.com

101 

 

1
0
1
 

 
 

Figure 4.5 Annual and Cumulative Monetary Needs of Indiana Interstate Pavements on 

the Basis of Service Life Estimates from Mixed Linear Performance Models 

 

 

Comparing the annual monetary needs resulting from the two different service life 

estimation methods would not be reasonable for the age-based needs assessment 

approach. The age-based approach is not expected to reliably predict the preservation 

needs on an annual basis. Thus, the reliability of the age-based monetary needs 

assessment may be higher if the results are aggregated in time periods.  

 

Figure 4.6 compares the monetary needs for three time periods: (i) 2010-2014,( ii) 

2015-2020, and (iii) 2010-2020. In the period 2010-2014, the monetary needs based on 

mixed model analysis were higher by 28%. However, the monetary needs for the period 

2015-2020 were almost identical. If the error associated with the service lives estimates 

had a distinctive pattern, there also would be a pattern in the monetary needs results (i.e., 

the needs would be systematically underestimated or overestimated).  
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The conclusion regarding the age-based approach is that unless the treatment 

average service lives, which are estimated by a rather simplistic method, are found 

typically higher or typically lower from the unbiased service life estimates, there will be 

no significant change in the estimated monetary needs. As such, in this needs assessment 

analysis, the impact of the method of service life estimation was found to be minimal. 

 

 

Figure 4.6 Comparison of Monetary Needs of Indiana Interstate Pavements on the Basis 

of Two Treatment Service Life Estimation Methods 

 

 

4.3 Impact of Pavement Performance Prediction Method on  

Performance-based Needs Assessment Analysis 

Pavement preservation needs can be assessed at the network level on the basis of 

the expected future performance of each pavement asset. This approach requires a well-

maintained PMS database and performance models that can predict the pavement 

deterioration after the application of a preservation treatment. The performance-based 
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approach is considered to be more reliable than the age-based approach since it does not 

utilize averages but rather uses specific predictions for each asset (Sinha and Labi, 2012).  

 

In Chapter 3, it was shown that mixed models have the advantage of offering 

“personalized” predictions for each individual in the analysis sample using the BLUP 

method. This characteristic can be used for acquiring highly accurate performance 

predictions, which would improve the reliability of performance-based estimated needs. 

In this section, the impact of prediction accuracy at the pavement section level on the 

network-level needs assessment will be investigated. In this section, the future 

preservation needs of the Indiana Interstate pavements that had been rehabilitated during 

the period 1996-2006 are assessed using the BLUP method for obtaining performance 

predictions as described in Chapter 3, and are compared with the needs estimated using 

linear regression predictions.  

 

Figure 4.7 presents the general framework for assessing future pavement 

preservation needs on the basis of performance trends (Sinha et al, 2005). The first step is 

to define a horizon year for the analysis. Next, the remaining service life is estimated for 

each pavement asset by obtaining performance predictions for each pavement asset 

specifically, and assuming a threshold that signifies performance failure and 

consequently the need for preservation. The physical needs of the network are then 

determined on the basis of the remaining service life estimation for each asset and the 

highway agency’s decision-making process regarding the choice of the “most suitable” 

preservation treatment for each asset. Finally, preservation treatment cost models, either 

in the form of average values for each treatment category or actual models that estimate 

the cost based on the asset functional class, project scale, location etc., are used to obtain 

the monetary preservation needs for the horizon period. 
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Figure 4.7 Framework for Pavement Preservation Needs Assessment Based on 

Performance-Predicted Trends (Sinha et al, 2005) 

 

 

The reliability of the results produced by a performance-based needs assessment 

depends on the reliability of the performance predictions and cost estimates that serve as 

the key inputs in this analysis. The improvements in the reliability of performance 

predictions for post-rehabilitated pavements accomplished in this study reduce the 

uncertainty introduced to the needs assessment analysis. To investigate the impact of the 

pavement section-specific performance prediction method (presented in Section 3.6.4) on 

the network-level needs estimation, the physical and monetary needs for the Indiana 

Interstate pavements that had been rehabilitated during the period 1996-2006 and had not 

been rehabilitated for a second time or reconstructed until 2009 (inventory information 

presented in Table 4.3) were estimated using performance predictions from linear 

regression and mixed linear models.  

 

Determine Remaining Service Life of 

Each Pavement Section in the Network 

Assess Physical Needs for Each 

Pavement Section in the Network 

Assess Monetary Needs for Each 

Pavement Section in the Network 

Determine Inventory 

Asset Performance Models 

Establish Performance Thresholds 

Develop Cost Models for 

Each Preservation Treatment 

Define Horizon Period 

Select First Year of Horizon Period 

Repeat Analysis for All Years 

within the Horizon Period 
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As explained in Section 3.4.3, performance predictions acquired from linear 

regression do not take into account the unobserved heterogeneity that is responsible for a 

part of the unexplained variation of the pavement deterioration process at the contract and 

pavement section level. The BLUP method, which was used in this thesis for obtaining 

pavement-section-specific predictions in mixed linear models, was used for predicting the 

condition of the Indiana Interstate pavement sections presented in Table 4.3. The chosen 

mixed linear models formulations used in this analysis are those shown in Table 3.10. 

 

As in the previous section, the period 2010-2020 was used as the horizon period, 

and it was assumed that each pavement asset would be rehabilitated using the same 

treatment received the last time that it was rehabilitated. Tables 4.7 and 4.8 present the 

physical needs estimated using IRI as the performance indicator on the basis of the two 

performance prediction methods: population-wide predictions from linear regression 

performance models and pavement-section-specific predictions from mixed linear 

performance models using the BLUP method.  

 

Comparing the estimated physical needs from the two performance prediction 

methods, it can be seen that the total physical needs predicted by the linear regression 

models were fewer than the needs predicted by the mixed models. The estimated physical 

needs from the two methods are graphically compared in Figure 4.8. 
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Table 4.7 Physical Needs
a
 Assessment on the Basis of Post-Rehabilitation Performance 

Predictions from Linear Regression Performance Models 

Rehabilitation 

Treatment 

Number of Interstate Pavement Sections 

Total 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 

Preventive 

Maintenance 
46 6 6 5 8 6 6 4 3 1 1  

Structural 

HMA Overlay 
0            

Functional 

HMA Overlay 
42    1 2 2 4 7 9 7 10 

Repair PCC and 

HMA Overlay 
27   2 6 2 4 2 5 2 1 3 

Rubblize 

PCC/Composite 

and HMA 

Overlay 

5     1 1 1  1 1  

PCC Overlay 

on PCCP 
2      1   1   

Total 122 6 6 7 15 11 14 11 15 14 10 13 

a Future needs for the Interstates rehabilitated from 1996 to 2006 

 

Table 4.8 Physical Needs
a
 Assessment on the Basis of Post-Rehabilitation Performance 

Predictions Acquired from the BLUP Method from Mixed Linear Performance Models 

Rehabilitation 

Treatment 

Number of Interstate Pavement Sections 

Total 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 

Preventive 

Maintenance 
42 6 5 5 4 6 4 3 1 1 4 3 

Structural 

HMA Overlay 
4   1    1  1 1  

Functional 

HMA Overlay 
54 1 3 3 3 4 6 7 5 10 7 5 

Repair PCC and 

HMA Overlay 
31 1  1 5 3 6 3 4 2 2 4 

Rubblize 

PCC/Composite 

and HMA 

Overlay 

4   1   1   1 1  

PCC Overlay 

on PCCP 
3 1   1   1     

Total  138 9 8 11 13 13 17 15 10 15 15 12 

a Future needs for the Interstates rehabilitated from 1996 to 2006 
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Figure 4.8 Comparison of Predicted Physical Needs of Indiana Interstate Pavements on 

the Basis of Two Performance Prediction Methods 

 

 

The average unit cost of each treatment, for Interstates, is presented in Table 4.6. 

Using the estimated physical needs and the average rehabilitation treatment cost, the 

monetary needs for the period 2010-2020 were estimated and compared (Figure 4.9). The 

results indicate that the monetary needs based on the regression model predictions were 

lower at the beginning of the horizon period (2010-2013), which can be seen clearer in 

Figure 4.10. Only 65% of the monetary needs for the period 2010-2014 were predicted by 

linear regression (assuming that the predictions obtained from the BLUP method are 

accurate). The gap closed somewhat in the next period (2015-2020) due to pavement 

sections whose failures were not predicted in the first period but were predicted during 

the second period. Assuming the focus was on the entire horizon period, then linear 

regression underestimated the monetary needs by 12.6%. 
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Figure 4.9 Comparison of Predicted Monetary Needs of Indiana Interstate Pavements on 

the Basis of Two Performance Prediction Methods  

 

 

To conclude, the effect of the prediction accuracy on needs assessment was found 

higher for short-term monetary needs estimation. The needs were underestimated by 35%, 

which is a significant percentage. The long-term effect of the difference in model type on 

monetary needs was found to be relatively insignificant. However, the physical needs 

estimated from the mixed model performance models are superior and provided 

information on the exact assets that were in need of rehabilitation, taking into account 

any unobserved effects, which makes the performance-based needs assessment approach  

much more reliable. 
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Figure 4.10 Comparison of Monetary Needs of Indiana Interstate Pavements on the Basis 

of Two Performance Prediction Methods  

 

 

4.4 Chapter Summary 

In this chapter, the impact of the methodological framework proposed in this 

study for pavement performance prediction on pavement preservation needs assessment 

was investigated for the age-based and the performance-based needs assessment 

approaches. The service lives and performance predictions resulting from the mixed 

linear models and linear regression analysis were compared to make inferences about the 

practical benefits of the proposed mixed model methodology.  

 

It was found that, for the age-based approach, unless the treatments average 

service lives, which are estimated by a simplistic method, are found typically higher or 

typically lower from the unbiased service life estimates, there will be no significant 

change in the estimated monetary needs. Moreover, it was found that the effect of the 
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prediction accuracy on the performance-based needs assessment was higher for the 

estimation of short-term monetary needs compared to long-term monetary needs. 

 

Comparing all of the results from this chapter together in Figure 4.11, it can be 

concluded that there is no method that gives typically closer estimates to the 

performance-based mixed linear method, which is assumed to be the most accurate 

method for obtaining pavement-section-specific predictions. Even though the service life 

estimates that use mixed linear models are considered significantly less biased than those 

using linear regression, the age-based needs assessment approach cannot be 

recommended for PMS application because the resulting needs are not close to the actual 

future needs of the network. Thus, the only method from those presented here suggested 

for PMS application is the performance-based needs assessment approach, which used 

the BLUP method to predict pavement performance from mixed linear models. 

 

 

Figure 4.11 Comparison of Monetary Needs of Indiana Interstate Pavements on the Basis 

of the Four Displayed Methods 

  



www.manaraa.com

111 

 

1
1
1
 

CHAPTER 5 SUMMARY, CONCLUSIONS, AND FUTURE WORK 

5.1 Summary 

Reliable and effective treatment performance modeling techniques provide 

substantial benefits to a PMS. If the modeling technique is appropriately chosen on the 

basis of practicality, precision, the intended use of the model, and the nature of the 

pavement data, its applicability to PMS can be enhanced. Since the incorporation of 

performance modeling techniques in PMS in the 1970s, a variety of techniques have been 

investigated and/or implemented in PMS. However, in the area of treatment performance 

modeling, an enhanced framework is needed for post-rehabilitation performance 

prediction and service life estimation that can accommodate the peculiar nature of 

pavement data and allow for integration of the network and project management levels, 

while remaining practical and appropriate for PMS application. 

 

This thesis focused on developing a methodological framework for rehabilitation 

treatment performance analysis, specifically for the requirements and purposes of 

pavement management (discussed in Section 3.1). To accomplish this objective, a general 

procedure was followed (Figure 1.2). As such, in selecting modeling techniques and 

assuming relevant formulations, the following three aspects were considered: (i) the 

previous relevant research and lessons learned from past practices in highway agencies, 

(ii) the characteristics of pavement rehabilitation data, (iii) the purposes and requirements 

of pavement management in terms of the input data from rehabilitation analysis. A 

literature review of the state of the practice and state of the art techniques and methods 

for predicting pavement deterioration and/or for estimating treatment service life was 

presented in Chapter 2. Then, the criteria for the selection of an appropriate modeling 

technique for rehabilitation treatment performance analysis to be incorporated into PMS 
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were identified and were used to evaluate the previously-reviewed empirical modeling 

techniques. The peculiar nature of pavement rehabilitation data was described in Chapter 

3, and that information was shown for a specific treatment in the form of a three-level 

nested structure: contracts (first level), pavement sections (second level), and 

performance measurements (third level). In the same chapter, the outcomes of 

rehabilitation treatment performance analysis that are essential for pavement management 

were identified.   

 

Taking into consideration the previously-mentioned pieces of information, it was 

concluded that mixed models are the most appropriate technique to be used in pavement 

management for treatment performance analysis. The theory of mixed linear models was 

presented in Chapter 3, with a focus on the general formulation of the models, the 

available estimation approaches, and the prediction methods and their importance to 

pavement management.  

 

Regarding the applicability of mixed linear models in PMS, two formulations 

were identified as relevant: (1) the one-way random effects model and (2) the three-level 

nested linear model. The necessity for serial correlation correction in repeated-measures 

pavement data was then discussed, and numerous covariance structures that can be used 

for this correction were presented. Rehabilitation data from applications of a single 

treatment to Indiana Interstates were used to demonstrate analytically the procedure for 

selecting a mixed model formulation, and the analysis of the covariance structure. Also, 

two methodologies based on two different types of analysis were explored. Regarding the 

performance prediction and service life estimation of in-service pavements that have been 

rehabilitated in the past (predictions conditional on a specific in-service pavement 

section), Best Linear Unbiased Prediction demonstrated high prediction reliability. This 

method provides pavement managers the ability to duly incorporate the “realized values” 

of the random effects associated with unobserved heterogeneity in the prediction process. 

The second approach, which uses “population-wide” predictions and estimates, was 
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found to be more appropriate for obtaining predictions regarding pavement sections 

scheduled to be rehabilitated in the future and average treatment service life estimates.   

 

Using multiple samples from different rehabilitation treatments, it was concluded 

that the three-level nested linear model with a first-order ante-dependence covariance 

structure is most appropriate for analyzing data regarding pavement rehabilitation 

treatment performance if there are no data availability constraints. The proposed 

methodological framework was presented in Figure 3.10; and the limitations of the 

framework in terms of performance indicator type, deterioration functional form, data 

availability, and statistical software were discussed in Section 3.9.  

 

In Chapter 4, the impact of the methodological framework proposed in this thesis 

for pavement performance prediction on pavement preservation needs assessment was 

investigated for the age-based and performance-based needs assessment approaches. The 

resulting service lives and performance predictions from the mixed linear models and 

linear regression analysis were compared to make inferences about the proposed mixed 

model methodology. It was found that, for the age-based approach, unless the treatments 

average service lives, which are estimated by a simplistic method, are found typically 

higher or typically lower than the unbiased service life estimates, there will be no 

significant change in the estimated monetary needs. Moreover, it was found that the 

effect of the prediction accuracy on the performance-based needs assessment was higher 

for the estimation of short-term monetary needs compared to long-term monetary needs. 

Finally, the performance-based needs assessment approach, which used the Best Linear 

Unbiased Prediction method to predict pavement performance from mixed linear models, 

was suggested for PMS application. 
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5.2 Conclusions 

This thesis contributed to the enhancement of rehabilitation treatment 

performance analysis for pavement management systems. The main research findings are 

summarized below:  

 

 It was found that pavement rehabilitation data typically involves a three-level 

nested structure: information on a specific treatment appears in the form of numerous 

treatment applications (contracts); each contract is assumed to be comprised of multiple 

pavement sections; and for each pavement section, multiple condition measurements are 

available. Due to the existence of this structure, this thesis proposed a three-level nested 

linear model (Section 3.5.2) as a more appropriate formulation for rehabilitation 

performance analysis. This formulation assumes that observations within the same 

contract and observations within the same pavement section that belongs to a given 

contract share unobserved characteristics. The results from the case study suggest that the 

main source of unexplained variation is at the contract level, which implies that 

unobserved contract-related characteristics, such as construction quality, overlay 

thickness, and milling depth, play a significant role in post-rehabilitation performance. 

Furthermore, the pavement section-level variance was also found to be significant. Thus, 

using a more appropriate structure compared to previous research, the proposed 

formulation corrects for unobserved heterogeneity bias.  

 

 The covariance structure of pavement repeated measures was analyzed because of 

the need to correct for serial correlation among the repeated measures within a pavement 

section, and the intent to identify one structure (for purposes of practicality) that can be 

an accurate representation of post-rehabilitated pavement. After testing different 

structures on multiple datasets, the first-order ante-dependence structure (Eq. 3.24) was 

generally appropriate for post-rehabilitation data if the sample size was large enough to 

allow the use of this structure. The appropriateness of this structure is based on the fact 

that variance among the measurements for the same year after rehabilitation is higher 

when the number of years after rehabilitation, to which the measurement of performance 



www.manaraa.com

115 

 

1
1
5
 

refers, is higher. This result implies that during the first years after rehabilitation, 

pavement performance varies less among pavement sections while many years after 

rehabilitation, there is much higher unexplained variation in performance among sections.  

 

 It was shown that mixed models can offer two different kinds of predictions: 

conditional (specific to a pavement section) and unconditional (population-wide). Both 

techniques are of paramount importance with regard to PMS. The outputs from the 

application of these techniques are essential inputs for pavement management. The Best 

Linear Unbiased Prediction (BLUP) method offers reliable conditional predictions 

regarding the future performance and remaining service life of in-service previously-

rehabilitated pavements, which can be used in performance-based future needs 

assessment for these pavements. Also, population-wide treatment performance and 

service life expectations can be used for project-level decision-making with respect to 

rehabilitation treatment selection, for age-based physical and monetary needs assessment, 

and for treatment effectiveness evaluation.    

 

 It was realized that the presence of a decision-making procedure in treatment 

selection could introduce serious bias to the effort to compare the effectiveness of 

different treatments. Treatment service life estimates (Figure 4.2) indicated the possible 

existence of selectivity bias. More costly and structurally stronger treatments were found 

to have shorter service life compared to less costly and structurally weaker treatments. 

For example, the average service life of PCC overlay was found to be 12.5 years, while 

the average service life of thin HMA overlay was found to be 15.5 years. A closer look at 

the PCC overlay data revealed that the treatment was applied only in areas with very high 

commercial vehicle traffic, which probably caused more rapid pavement deterioration. 

The problem of selectivity bias in rehabilitation treatment analysis was emphasized in 

this thesis so that pavement managers are aware that the performance models and service 

life estimates may be conditional to the sample.  
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 This thesis also included evaluation of the impacts of the proposed performance 

prediction framework on future rehabilitation needs estimation. Specifically, the effect of 

more reliable predictions on the predicted network-level rehabilitation needs was 

investigated. For the age-based approach, unless the treatment average service lives, 

which are estimated by a simplistic method, are found to be systematically higher or 

lower from the unbiased service life estimates, there will be no significant change in the 

estimated monetary needs.  

 

 Regarding the performance-based needs assessment, it was found that prediction 

reliability had a higher effect on the short-term (five-year horizon period) needs 

estimation. Actually, linear regression performance predictions resulted in a 35% 

underestimation of the short-term monetary needs, compared to mixed model predictions. 

The performance-based needs assessment approach, which used the BLUP method to 

predict pavement performance from mixed linear models, is proposed by this thesis as 

more reliable for PMS application compared to the other presented approaches.   

 

 The proposed methodological framework (Figure 3.10) is designed to serve as a 

further improvement of the existing methods used for treatment performance prediction 

in highway agencies and also to serve as a catalyst for integrating project level and 

network level management. The framework will be further simplified (Figures 3.11 and 

3.12) when data availability and statistical software limitations are overcome in the near 

future. This thesis demonstrated the analysis steps in great detail and developed the code 

used for the analysis in the Appendices to help in the understanding of the techniques 

used and facilitate their adoption by highway agencies. This analysis requires an updated 

and integrated PMS database, and updated post rehabilitation information is needed for 

every pavement asset.  Also, every asset receiving a new treatment should be re-inserted 

in the database and coded differently so that interventions can be easily tracked. These 

database requirements could delay the implementation of the proposed framework in 

highway agencies. On the other hand, there is need for basic explanatory variables (e.g., 
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age, ESALs and/or heavy truck traffic, and pre-treatment pavement condition) because 

unobserved variables that are constant within a contract or pavement section are taken 

into account through the model estimation.      

 

   

5.3 Future Research  

This thesis focused on pavement rehabilitation. The data used for illustration and 

configuration of the proposed methodology is from a selection of rehabilitation 

treatments applied to Indiana Interstates during the period 1996-2006. Also, the 

methodology was developed for using continuous performance indicators and for 

representing each treatment performance by a single performance indicator. Finally, the 

evaluation of the impacts of the proposed framework was restricted to network needs 

assessment. The following areas of future research were identified: 

 

 Evaluation of the impacts of the proposed framework on asset valuation. The 

increased performance prediction reliability offered by the proposed framework may 

enhance the reliability of performance-based asset valuation approaches.  A comparison 

between pavement asset values estimated using simplistic approaches and the values 

estimated using pavement section-specific predictions from mixed models could reveal 

any significant impact on asset valuation.  

 

  The incorporation of seemingly unrelated equations in the existing framework.    

Previous research has proposed using a system of equations based on multiple 

performance indicators for pavement performance modeling (Prozzi and Hong, 2006; 

Anastasopoulos et al, 2012). Seemingly unrelated equations (SURE) could be 

investigated for use in the proposed framework in order to take into account the various 

performance indicators in pavement management to accomplish more effective decision-

making.   
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 Expansion of the developed framework to preservation analysis of other linear 

highway assets, such as guardrails and pavement markings. The expansion of the 

framework would be beneficial to highway agencies as it could lead to the integration of 

asset management component systems in terms of the performance modeling technique. 
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Appendix A 

SAS 9.2 commands for the Linear Regression model presented in Section 3.6.1, Table 3.3:  

- Ordinary Least Squares Estimation 

proc reg data=tr213; 

 model iri=age comm1 logpreiri ppt/clb; 

run; 

 

- Restricted Maximum Likelihood Estimation 

proc mixed data=tr213 method=REML covtest cl; 

 model iri=age comm logpreiri ppt/solution; 

run; 

 

SAS 9.2 commands for the One-Way Random Effects model presented in Section 3.6.1, 

Table 3.4: 

 

proc mixed data=tr213 method=REML covtest cl; 

class id; 

model iri=age comm ppt logpreiri/solution; 

random id;  

run; 

 

SAS 9.2 commands for the Three-Level Nested Linear model presented in Section 3.6.1, 

Table 3.5: 

 

proc mixed data=tr213 method=REML covtest cl; 

class contract id; 

model iri=age comm ppt logpreiri /solution ddfm=kr; 

random contract id(contract)/ solution; 

run; 
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Appendix B 

SAS 9.2 commands for the Three-Level Nested Linear Model under the assumption of 

Unstructured Covariance presented in Section 3.6.2, Equations 3.34-3.36:  

 

proc mixed data=tr213 method=REML covtest cl scoring=5; 

class id contract; 

model iri=age comm ppt logpreiri /solution; 

repeated / subject=id(contract) type=un r rcorr; 

random contract; 

ods output covparms=cov 

 rcorr=corr; 

run; 

 

SAS 9.2 commands for the Three-Level Nested Linear Model under the assumption of 

First-Order Ante-Dependence Covariance Structure presented in Section 3.6.2, Equations 

3.37-3.39 and Table 3.6: 

 

proc mixed data=tr213 method=REML covtest cl; 

class id contract; 

model iri=age ppt logpreiri /solution; 

repeated / subject=id(contract) type=ante(1) r rcorr; 

random contract; 

ods output covparms=cov 

 rcorr=corr; 

run; 
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Appendix C 

SAS 9.2 commands for the point estimates and confidence limits of the example 

presented in Section 3.6.3, page 68:  

proc mixed data=tr213 method=REML covtest cl; 

class id contract; 

model iri=age ppt logpreiri /solution; 

repeated / subject=id(contract) type=ante(1) r rcorr; 

random contract; 

estimate 'Rehabilition of a pavement section - Planning Stage' 

intercept 1 age 15 ppt 40.24 logpreiri 2.072 / cl; 

run; 

 

 

SAS 9.2 commands for the average pavement performance estimates and 95% confidence 

limits presented in Section 3.6.3, Table 3.7:  

proc mixed data=tr213 method=REML covtest cl; 

class id contract; 

model iri=age ppt logpreiri /solution; 

repeated / subject=id(contract) type=ante(1) r rcorr; 

random contract; 

estimate 'average for year 12' intercept 1 age 12 ppt 41.0685 logpreiri 

1.93098 / cl; 

estimate 'average for year 13' intercept 1 age 13 ppt 41.0685 logpreiri 

1.93098 / cl; 

estimate 'average for year 14' intercept 1 age 14 ppt 41.0685 logpreiri 

1.93098 / cl; 

estimate 'average for year 15' intercept 1 age 15 ppt 41.0685 logpreiri 

1.93098 / cl; 

estimate 'average for year 16' intercept 1 age 16 ppt 41.0685 logpreiri 

1.93098 / cl; 

estimate 'average for year 17' intercept 1 age 17 ppt 41.0685 logpreiri 

1.93098 / cl; 

estimate 'average for year 18' intercept 1 age 18 ppt 41.0685 logpreiri 

1.93098 / cl; 

run; 

 

SAS 9.2 commands for obtaining the Linear Regression predictions for Section 3.6.4, 

Table 3.8:  

proc mixed data=tr213 method=REML covtest cl; 

model iri=age comm ppt logpreiri/solution residual outpm=pred_mean; 

run; 
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SAS 9.2 commands for obtaining the Three-Level Nested Linear Model predictions using 

the BLUP method for Section 3.6.4, Table 3.8: 

proc mixed data=tr213 method=REML covtest cl; 

class contract id; 

model iri=age comm ppt logpreiri /solution residual ddfm=kr 

outp=pred_BLUP_3ln outpm=pred_mean_3ln influence; 

random contract id(contract)/ solution; 

estimate 'I-74, mile 4-5, 2006' intercept 1 age 5 comm 6.89 ppt 38.13 

logpreiri 2.102091 | contract 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

id(contract)0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0/ 

cl; 

estimate 'I-74, mile 4-5, 2007' intercept 1 age 6 comm 6.95 ppt 38.13 

logpreiri 2.102091 | contract 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

id(contract)0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0/ 

cl; 

[….] 
estimate 'I-74, mile 4-5, 2016' intercept 1 age 15 comm 8.43 ppt 38.13 

logpreiri 2.102091 | contract 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

id(contract)0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0/ 

cl; 
run; 
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